OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1471–1475

Higher-order sub-Poissonian photon statistics in terms of factorial moments

Daniel Erenso, Reeta Vyas, and Surendra Singh  »View Author Affiliations


JOSA B, Vol. 19, Issue 6, pp. 1471-1475 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001471


View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce the concept of higher-order super-Poissonian and sub-Poissonian statistics and show that higher-order sub-Poissonian statistics is a signature of a nonclassical field. Fields generated in intracavity second-harmonic generation and single-atom resonance fluorescence are shown to exhibit higher-order sub-Poissonian statistics.

© 2002 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5290) Quantum optics : Photon statistics

Citation
Daniel Erenso, Reeta Vyas, and Surendra Singh, "Higher-order sub-Poissonian photon statistics in terms of factorial moments," J. Opt. Soc. Am. B 19, 1471-1475 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-6-1471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble and D. F. Walls, eds., feature on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4 (10), (1987).
  2. P. W. Milonni and S. Singh, “Some recent developments in the fundamental theory of light,” Adv. At., Mol., Opt. Phys. 28, 75–142 (1991). [CrossRef]
  3. U. Fano, “Ionization yield of radiation. II. fluctuations of the number of ions,” Phys. Rev. 72, 26–29 (1947). [CrossRef]
  4. L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence,” Opt. Lett. 4, 205–207 (1979). [CrossRef] [PubMed]
  5. G. S. Agarwal and K. Tara, “Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics,” Phys. Rev. A 46, 485–488 (1992). [CrossRef] [PubMed]
  6. J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenonena, 2nd ed. (Kluwer, Dordrecht, The Netherlands, 1991).
  7. J. Perina, Jr., and J. Perina, “Quantum statistics of a nonlinear optical coupler,” in Progress in Optics, by E. Wolf, ed. (Elsevier, Amsterdam, 2000), Vol. 41, pp. 361–419.
  8. C. T. Lee, “Higher-order criteria for nonclassical effects in photon statistics,” Phys. Rev. A 41, 1721–1724 (1990). [CrossRef] [PubMed]
  9. R. Vyas and S. Singh, “Higher-order nonclassical effects in a parametric oscillator,” Phys. Rev. A 62, 033803 (5) (2000). [CrossRef]
  10. A. B. Dodson and R. Vyas, “Homodyne photon statistics of the subthreshold degenerate parametric oscillator,” Phys. Rev. A 47, 3396–3412 (1993). [CrossRef] [PubMed]
  11. P. D. Drummond and C. W. Gardiner, “Generalized P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980). [CrossRef]
  12. R. Loudon, “Non-classical effects in the statistical properties of light,” Rep. Prog. Phys. 43, 913–945 (1980). [CrossRef]
  13. P. D. Drumond, K. J. McNeil, and D. F. Walls, “Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory,” Opt. Acta 28, 211–225 (1981). [CrossRef]
  14. G. S. Holliday and S. Singh, “Enhancement of antibunching in second harmonic generation,” in Coherence and Quantum Optics VI, J. H. Eberly, L. Mandel, and E. Wolf, eds. (Plenum, New York, 1990), pp. 509–512.
  15. Y. Qu, M. Xiao, G. S. Holliday, S. Singh, and H. J. Kimble, “Enhancement of photon antibunching by passive interferometry,” Phys. Rev. A 45, 4932–4943 (1992). [CrossRef] [PubMed]
  16. R. Vyas, C. Wang, and S. Singh, “Homodyne detection for the enhancement of antibunching,” Phys. Rev. A 54, 2391–2396 (1996). [CrossRef] [PubMed]
  17. R. Vyas and S. Singh, “Quantum Statistics of broadband squeezed light,” Opt. Lett. 14, 1110–1112 (1989). [CrossRef] [PubMed]
  18. R. Vyas and S. Singh, “Photon-counting statistics of the degenerate parametric oscillator,” Phys. Rev. A 40, 5147–5159 (1989). [CrossRef] [PubMed]
  19. R. Vyas and S. Singh, “Antibunching and photoemission waiting times,” J. Opt. Soc. Am. B 17, 634–637 (2000). [CrossRef]
  20. S. Singh, “Antibunching, sub-poissonian photon statistics and finite bandwidth effects in resonance fluorescence,” Opt. Commun. 44, 254–258 (1983). [CrossRef]
  21. S. Singh, “Photon statistics in resonance fluorescence with finite bandwidth excitation,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 457–463.
  22. H. J. Carmichael, S. Singh, R. Vyas, and P. R. Rice, “Photoelectron waiting times and atomic state reduction in resonance fluorescence,” Phys. Rev. A 39, 1200–1218 (1989). [CrossRef] [PubMed]
  23. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
  24. H. F. Arnoldus and G. Nienhuis, “Photon statistics of fluorescence radiation,” Opt. Acta 33, 691–702 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited