OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1521–1534

Scalable antiguided ribbon laser

Raymond J. Beach, Michael D. Feit, Ralph H. Page, LeAnn D. Brasure, Russell Wilcox, and Stephen A. Payne  »View Author Affiliations


JOSA B, Vol. 19, Issue 7, pp. 1521-1534 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001521


View Full Text Article

Enhanced HTML    Acrobat PDF (913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scalable fiber laser approach to phase locking of multiple gain cores in an antiguided structure is described and modeled. In essence, the waveguide comprises a periodic sequence of gain-loaded and no-gain segments that has a uniform refractive index (referred to as the ribbon) encapsulated within a reduced-index cladding region. Our calculations reveal that the constant-index profile within the ribbon structure provides optimal mode discrimination; the refractive index must be constant within ±0.001 to ensure single-mode operation for a five-core design. One-dimensional and two-dimensional calculations are pursued to support the design criteria. Slight periodic variation in the refractive index of the ribbon laser leads to the emergence of a photonic bandgap, in analogy to so-called holey fibers. Our constant-index design, together with the periodic gain profile, may be described as a photonic metal.

© 2002 Optical Society of America

OCIS Codes
(140.3290) Lasers and laser optics : Laser arrays
(140.3510) Lasers and laser optics : Lasers, fiber

Citation
Raymond J. Beach, Michael D. Feit, Ralph H. Page, LeAnn D. Brasure, Russell Wilcox, and Stephen A. Payne, "Scalable antiguided ribbon laser," J. Opt. Soc. Am. B 19, 1521-1534 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-7-1521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Botez and D. R. Scifres, Diode Laser Arrays (Cambridge U. Press, Cambridge, 1994), Chap. 1.
  2. W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36, 1452–1454 (2000). [CrossRef]
  3. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bricknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” in Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, Washington, D.C., 1999), paper CPD11–1.
  4. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bricknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, “110 W fibre laser,” Electron. Lett. 35, 1158–1160 (1999). [CrossRef]
  5. M. Muendal, B. Engstrom, D. Kea, B. Lalierte, R. Minns, R. Robinson, B. Rockney, Y. Zhang, R. Collins, P. Gavrolovic, and A. Rowley, “35-watt cw singlemode ytterbium fiber laser at 1.1 micron,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper CPD30–1.
  6. H. Zeller, U. Willamowski, A. Tunnermann, H. Welling, S. Unger, V. Reichel, H.-R. Muller, J. Kirchof, and P. Albers, “High-power cw neodymium-doped fiber laser operating at 9.2 W with high beam quality,” Opt. Lett. 20, 578–560 (1995). [CrossRef]
  7. D. Meyhuys, K. Mitsunaga, L. Eng, W. K. Marshall, and A. Yariv, “Supermode control in diffraction-coupled semiconductor laser arrays,” Appl. Phys. Lett. 53, 1165–1167 (1988). [CrossRef]
  8. P. Glas, M. Naumann, A. Schirrmacher, and Th. Pertsch, “A cw diode-pumped single-silica fiber comprising 40 cores used as active elements for a high power fiber laser at 1050 nm,” in Conference on Lasers and Electro-Optics (CLEO/US), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CtuK 5.
  9. M. Wrage, P. Glas, M. Leitner, T. Sandrock, N. N. Elkin, A. P. Napartovich, and A. G. Sukharev, “Experimental and numerical determination of coupling constant in multicore fiber,” Opt. Commun. 175, 97–102 (2000). [CrossRef]
  10. P. L. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001). [CrossRef]
  11. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436–1438 (2000). [CrossRef]
  12. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16, 823–825 (1991). [CrossRef] [PubMed]
  13. J. Banerji, A. R. Davies, and R. M. Jenkins, “Comparison of Talbot and 1-to-N-way phase-locked array resonators,” Appl. Opt. 36, 1604–1609 (1997). [CrossRef] [PubMed]
  14. E. K. Gorton and R. M. Jenkins, “Theory of 1-N-way phase-locked resonators,” Appl. Opt. 40, 916–920 (2001). [CrossRef]
  15. D. Botez and A. P. Napartovich, “Phase-locked arrays of antiguides: analytical theory,” IEEE J. Quantum Electron. 30, 975–980 (1994). [CrossRef]
  16. D. Botez, A. P. Napartovich, and C. A. Zmudzinski, “Phase-locked arrays of antiguides: analytic theory II,” IEEE J. Quantum Electron. 31, 244–253 (1995). [CrossRef]
  17. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999). [CrossRef]
  18. D. Marcuse, Theory of Dielectric and Optical Waveguides, 2nd ed. (Academic, New York, 1991).
  19. A. P. Napartovich and D. Botez, “Analytic theory of the structure of collective modes in antiguided semiconductors,” Quantum Electron. 26, 670–675 (1996). [CrossRef]
  20. A. P. Napartovich and D. Botez, “Analytic theory of phase-locked arrays of antiguided diode lasers,” in Physics and Simulation of Optoelectronic Devices, W. W. Chow and M. Osinski, eds., Proc. SPIE 2994, 600–610 (1997). [CrossRef]
  21. E. Yablonovitch, “Inhibited spontaneous emission solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  22. J. Broeng, T. Sondergaard, S. E. Barkou, P. M. Barbeito, and A. Bjarklev, “Waveguidance by the photonic bandgap effect in optical fibres,” J. Opt. A 1, 477–482 (1999). [CrossRef]
  23. M. D. Feit and J. A. Fleck, Jr., “A spectral approach to optical resonator theory,” Appl. Opt. 20, 2843–2851 (1981). [CrossRef] [PubMed]
  24. M. D. Feit and J. A. Fleck, Jr., “Mode properties of optical fibers with lossy components by the propagating beam theory,” Appl. Opt. 20, 848–856 (1981). [CrossRef] [PubMed]
  25. M. D. Feit and J. A. Fleck, Jr., “Computation of mode eigenfunctions in graded index optical fibers by the propagating beam method,” Appl. Opt. 19, 2240–2246 (1980). [CrossRef] [PubMed]
  26. M. D. Feit and J. A. Fleck, “Analysis of rib waveguide and couplers by the propagating beam method,” J. Opt. Soc. Am. A 7, 73–79 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited