OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1564–1574

Grating translation technique for vectorial beam coupling and its applications to linear signal detection

G. F. Calvo, B. I. Sturman, F. Agulló-López, M. Carrascosa, A. A. Kamshilin, and K. Paivasaari  »View Author Affiliations

JOSA B, Vol. 19, Issue 7, pp. 1564-1574 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop the theory of vectorial beam coupling in cubic photorefractive crystals to describe the effect of fast phase modulation on output intensities and polarizations. Special emphasis is given to new features of the grating translation technique compared with its scalar variant. We show, in particular, that a strong nonlocal ac response in crystals of the sillenite family can be effectively used for the linear detection of fast signals. Theoretical results are supported by polarization ac experiments with Bi12TiO20 crystals.

© 2002 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.5320) Materials : Photorefractive materials
(230.5440) Optical devices : Polarization-selective devices

G. F. Calvo, B. I. Sturman, F. Agulló-López, M. Carrascosa, A. A. Kamshilin, and K. Paivasaari, "Grating translation technique for vectorial beam coupling and its applications to linear signal detection," J. Opt. Soc. Am. B 19, 1564-1574 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Z. Zha, P. Amrhein, and P. Günter, “Measurement of phase shift in photorefractive crystals by a novel method,” IEEE J. Quantum Electron. 26, 788–792 (1990). [CrossRef]
  2. R. Hofmeister, A. Yariv, A. Kewitsch, and S. Yagi, “Simple methods of measuring the net photorefractive phase shift and coupling constant,” Opt. Lett. 18, 488–490 (1993). [CrossRef]
  3. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 586–623 (1997). [CrossRef]
  4. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B 15, 905–913 (1998). [CrossRef]
  5. R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  6. A. A. Kamshilin, K. Paivasaari, A. V. Khomenko, and C. Fuentes-Hernandez, “Polarization self-modulation of the nonstationary speckle field in a photorefractive crystal,” Opt. Lett. 24, 832–834 (1999). [CrossRef]
  7. Ph. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164 (1995). [CrossRef]
  8. A. A. Kamshilin, Y. Iida, S. Ashihara, T. Shimura, and K. Kuroda, “Linear sensing of speckle-pattern displacements using photorefractive GaP crystal,” Appl. Phys. Lett. 74, 2575–2577 (1999). [CrossRef]
  9. A. A. Kamshilin, K. Paivasaari, M. Klein, and B. Pouet, “Adaptive interferometer using self-induced electro-optic modulation,” Appl. Phys. Lett. 77, 4098–4100 (2000). [CrossRef]
  10. S. Stepanov, “Applications of photorefractive crystals,” Rep. Prog. Phys. 57, 39–116 (1994). [CrossRef]
  11. H. C. Pedersen, P. M. Johansen, and T. G. Pedersen, “Analytical modeling of two beam coupling during grating translation in photorefractive media,” Opt. Commun. 192, 377–385 (2001). [CrossRef]
  12. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).
  13. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Systems (Springer-Verlag, Berlin, 1991).
  14. B. I. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina, V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Theory of photorefractive vectorial coupling in cubic crystals,” Phys. Rev. E 60, 3332–3352 (1999). [CrossRef]
  15. S. Stepanov, S. M. Shandarov, and N. D. Khat’kov, “Photoelastic contribution to the photorefractive effect in cubic crystals,” Sov. Phys. Solid State 29, 1754–1756 (1987).
  16. G. Pauliat, P. Mathey, and G. Roosen, “Influence of piezoelectricity on the photorefractive effect,” J. Opt. Soc. Am. B 8, 1942–1946 (1991). [CrossRef]
  17. S. M. Shandarov, A. Emelyanov, O. Kobozev, A. Reshet’ko, V. V. Volkov, and Yu. Kargin, “Photorefractive properties of doped sillenite crystals,” in Nonlinear Optics of Low-Dimensional Structures and New Materials, V. I. Emel’yanov and V. Y. Panchenko, eds., Proc. SPIE 2801, 221–230 (1996). [CrossRef]
  18. P. Réfrégier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiment,” J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  19. C. S. K. Walsh, A. K. Powell, and T. J. Hall, “Techniques for the enhancement of space-charge fields in photorefractive materials,” J. Opt. Soc. Am. B 7, 288–303 (1990). [CrossRef]
  20. V. P. Kamenov, E. Shamonina, K. H. Ringhofer, E. Nippolainen, V. V. Prokofiev, and A. A. Kamshilin, “Photorefractive light scattering families in (111)-cut Bi12TiO20 crystals with an external electric ac field,” Phys. Rev. E 63, 16607–16616 (2000). [CrossRef]
  21. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1969).
  22. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1979), p. 271.
  23. L. D. Landau and E. M. Lifshitz, Field Theory (Pergamon, Oxford, 1969).
  24. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  25. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  26. J. W. Wagner and J. B. Spitcer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316–1326 (1987). [CrossRef]
  27. A. Grunnet-Jepsen, I. Aubrecht, and L. Solymar, “Investigation of the internal field in photorefractive materials and measurements of the effective electro-optic coefficient,” J. Opt. Soc. Am. B 12, 921–929 (1995). [CrossRef]
  28. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves in photorefractive crystals and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919–1932 (1993). [CrossRef]
  29. S. M. Shandarov, N. Nazhestkina, O. Kobozev, and A. A. Kamshilin, “Nonlinearity of a response in photorefractive crystals with a square-wave applied field,” Appl. Phys. B 68, 1007–1012 (1999). [CrossRef]
  30. G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa, “Singular behaviour of light-induced space charge in photorefractive media under an ac field,” Phys. Rev. Lett. 84, 3839–3942 (2000). [CrossRef] [PubMed]
  31. G. A. Brost, “Photorefractive grating formation at large modulation with alternating electric field,” J. Opt. Soc. Am. B 9, 1454–1460 (1992). [CrossRef]
  32. J. E. Millerd, E. M. Garmine, M. B. Klein, B. A. Wechsler, F. P. Strohkendl, and G. A. Brost, “Photorefractive response at high modulation depth in Bi12TiO20,” J. Opt. Soc. Am. B 9, 1449–1453 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited