OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1653–1659

Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions

Shuangchun Wen and Dianyuan Fan  »View Author Affiliations

JOSA B, Vol. 19, Issue 7, pp. 1653-1659 (2002)

View Full Text Article

Acrobat PDF (209 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatiotemporal instabilities in nonlinear Kerr media with arbitrary higher-order dispersions are studied by use of standard linear-stability analysis. A generic expression for instability growth rate that unifies and expands on previous results for temporal, spatial, and spatiotemporal instabilities is obtained. It is shown that all odd-order dispersions contribute nothing to instability, whereas all even-order dispersions not only affect the conventional instability regions but may also lead to the appearance of new instability regions. The role of fourth-order dispersion in spatiotemporal instabilities is studied exemplificatively to demonstrate the generic results. Numerical simulations confirm the obtained analytic results.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion

Shuangchun Wen and Dianyuan Fan, "Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions," J. Opt. Soc. Am. B 19, 1653-1659 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. See, for example, G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  2. N. C. Kothari and S. C. Abbi, “Instability growth and filamentation of very intense laser beams in self-focusing media,” Prog. Theor. Phys. 83, 414–442 (1990).
  3. R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 78, 2756–2759 (1997).
  4. L. W. Liou, X. D. Cao, C. J. McKinstrie, and G. P. Agrawal, “Spatiotemporal instabilities in dispersive nonlinear media,” Phys. Rev. A 46, 4202–4208 (1992).
  5. D. Anderson, M. Karlsson, M. Lisak, and A. Sergeev, “Modulational instability dynamics in a spatial focusing and temporal defocusing medium,” Phys. Rev. E 47, 3617–3622 (1993).
  6. E. J. Fonseca, S. B. Cavalcanti, and J. M. Hickmann, “Space-time break-up in the self-focusing of ultrashort pulses,” Opt. Commun. 169, 199–205 (1999).
  7. Xiang Liu, K. Beckwitt, and F. Wise, “Transverse instability of optical spatiotemporal solitons in quadratic media,” Phys. Rev. Lett. 85, 1871–1874 (2000).
  8. N. M. Litchinitser, C. J. McKinstrie, C. Martijn de Sterke, and G. P. Agrawal, “Spatiotemporal instabilities in nonlinear bulk media with Bragg gratings,” J. Opt. Soc. Am. B 18, 45–54 (2001).
  9. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
  10. V. A. Vysloukh and N. A. Sukhotskova, “Influence of third-order dispersion on the generation of a train of picosecond pulses in fiber waveguides due to self-modulation instability,” Sov. J. Quantum Electron. 17, 1509–1511 (1987).
  11. M. J. Potosek, “Modulation instability in an extended non-linear Schrödinger equation,” Opt. Lett. 12, 921–923 (1987).
  12. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991).
  13. A. Höök and M. Karlsson, “Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion,” Opt. Lett. 18, 1388–1390 (1993).
  14. F. Kh. Abdullaev, S. A. Darmanyan, S. Bsichoff, P. L. Christiansen, and M. P. Sørensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994).
  15. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
  16. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
  17. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996).
  18. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett. 23, 534–536 (1998).
  19. A. A. Zozulya, S. A. Diddams, and T. S. Clement, “Investigations of nonlinear femtosecond pulse propagation with the inclusion of Raman, shock, and third-order phase effects,” Phys. Rev. A 58, 3303–3310 (1998).
  20. M. Trippenbach and Y. B. Band, “Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media,” Phys. Rev. A 57, 4791–4803 (1998).
  21. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulational instabilities in dispersion-flattened fibers,” Phys. Rev. E 52, 1072–1080 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited