OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1692–1705

Quantum effects of thermal radiation in a Kerr nonlinear blackbody

Ze Cheng  »View Author Affiliations

JOSA B, Vol. 19, Issue 7, pp. 1692-1705 (2002)

View Full Text Article

Acrobat PDF (241 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photon blackbody field in Kerr nonlinear crystal is a squeezed thermal radiation state in which there is a new kind of quasi particle, the nonpolariton. A nonpolariton is a condensate of virtual nonpolar phonons, with a bare photon acting as the nucleus of condensation. The propagation velocity of nonpolaritons is a monotonically increasing function of temperature, and the noise of one quadrature phase in the squeezed thermal radiation state can be below the noise level in the vacuum state. The photon system undergoes a second-order phase transition from the normal to the squeezed thermal radiation state.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(270.0270) Quantum optics : Quantum optics

Ze Cheng, "Quantum effects of thermal radiation in a Kerr nonlinear blackbody," J. Opt. Soc. Am. B 19, 1692-1705 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, “Quantum solitons in optical fibres,” Nature 365, 307–313 (1993), and references therein.
  2. I. H. Deutsch, R. Y. Chiao, and J. C. Garrison, “Two-photon bound states: the diphoton bullet in dispersive self-focusing media,” Phys. Rev. A 47, 3330–3336 (1993).
  3. A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, Berlin, 1990).
  4. Y. Lai and H. A. Haus, “Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation,” Phys. Rev. A 40, 844–853 (1989).
  5. Y. Lai and H. A. Haus, “Quantum theory of solitons in optical fibers. II. Exact solution,” Phys. Rev. A 40, 854–866 (1989).
  6. F. X. Kärtner and H. A. Haus, “Quantum-mechanical stability of solitons and the correspondence principle,” Phys. Rev. A 48, 2361–2369 (1993).
  7. Ze Cheng, “Photonic superguiding state in nonlinear polar crystals,” Phys. Rev. A 51, 675–691 (1995).
  8. Z. Cheng and G. Kurizki, “Theory of one-dimensional quantum gap solitons,” Phys. Rev. A 54, 3576–3591 (1996).
  9. W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 2.
  11. J. Callaway, Quantum Theory of the Solid State, 2nd ed. (Academic, New York, 1991), p. 720.
  12. L. E. Reichl, A Modern Course in Statistical Physics (U. Texas Press, Austin, Tex., 1980).
  13. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Reed Educational, Oxford, 1980), Part 1, p. 183.
  14. W. Greiner, Quantum Mechanics: An Introduction, 3rd ed. (Springer-Verlag, Berlin, 1994), p. 74.
  15. D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
  16. D. Stoler, “Equivalence classes of minimum-uncertainty packets. II,” Phys. Rev. D 4, 1925–1926 (1971).
  17. E. Y. C. Lu, “Quantum correlations in two-photon amplification,” Lett. Nuovo Cimento 3, 585–589 (1972).
  18. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
  19. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
  20. L.-A. Wu, H. J. Kimble, J. L. Hall, and H.-F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
  21. H. J. Kimble and D. F. Walls, eds., feature on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4(10), (1987).
  22. R. Loudon and P. L. Knight, eds., special issue on squeezed light, J. Mod. Opt. 34(6/7), (1987).
  23. E. Giacobino and E. C. Fabre, eds., feature on quantum noise reduction in optical systems—experiments, Appl. Phys. B 55(3), (1992).
  24. K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. London, Ser. A 208, 352–365 (1951).
  25. J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555–1567 (1958).
  26. C. H. Henry and J. J. Hopfield, “Raman scattering by polaritons,” Phys. Rev. Lett. 15, 964–966 (1965).
  27. M. Artoni and J. L. Birman, “Quantum-optical properties of polariton waves,” Phys. Rev. B 44, 3736–3756 (1991).
  28. L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Phys. Rev. 104, 1189–1190 (1956).
  29. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited