OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 7 — Jul. 1, 2002
  • pp: 1711–1715

Reference lines in the optogalvanic spectra of uranium and thorium over the wavelength range 694–755 nm

W. DeGraffenreid and Craig J. Sansonetti  »View Author Affiliations


JOSA B, Vol. 19, Issue 7, pp. 1711-1715 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001711


View Full Text Article

Acrobat PDF (123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optogalvanic spectra of uranium and thorium are convenient sources of lines with which to calibrate wavemeters for high-resolution laser spectroscopy. We used hollow-cathode lamps for both uranium and thorium to observe the spectra, using a single-frequency cw dye laser operating over the wavelength range 694–755 nm. Eight uranium and seven thorium lines were measured with an accuracy of a few parts in 108 with our Fabry–Perot wavemeter. The estimated uncertainty of the measurements is 0.0002 cm−1 for both species. The results were compared with several previous measurements of these lines and were found to be in good agreement with values determined by Fourier-transform spectroscopy.

© 2002 Optical Society of America

OCIS Codes
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6440) Spectroscopy : Spectroscopy, optogalvanic

Citation
W. DeGraffenreid and Craig J. Sansonetti, "Reference lines in the optogalvanic spectra of uranium and thorium over the wavelength range 694–755 nm," J. Opt. Soc. Am. B 19, 1711-1715 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-7-1711


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14 800–20 000 cm−1 (CNRS, Paris, 1978).
  2. C. J. Sansonetti, “Precise measurements of hyperfine components in the spectrum of molecular iodine,” J. Opt. Soc. Am. B 14, 1913–1920 (1997).
  3. I. Velchev, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 571–596 nm,” J. Mol. Spectrosc. 187, 21–27 (1998).
  4. S. C. Xu, R. van Dierendonck, W. Hogervorst, and W. Ubachs, “A dense grid of reference iodine lines for optical frequency calibration in the range 595–655 nm,” J. Mol. Spectrosc. 201, 256–266 (2000).
  5. H. Kato⁁, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15 000 to 19 000 cm−1 (Japan Society for the Promotion of Science, Tokyo, 2000).
  6. B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000).
  7. S. A. Lee, J. Helmcke, J. L. Hall, and B. P. Stoicheff, “Doppler-free two-photon transitions to Rydberg levels: convenient, useful, and precise reference wavelengths for dye lasers,” Opt. Lett. 3, 141–143 (1978).
  8. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer, New York, 1996).
  9. C. J. Sansonetti and K.-H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
  10. T. J. Scholl, R. Cameron, S. D. Rosner, L. Zhang, R. A. Holt, C. J. Sansonetti, and J. D. Gillaspy, “Precision measurement of relativistic and QED effects in heliumlike beryllium,” Phys. Rev. Lett. 71, 2188–2191 (1993).
  11. Manufactured by Photron Pty. Ltd. Arlington Heights, Ill. Identification of this commercial equipment is made to specify adequately the experiment described in this Letter. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
  12. C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?” in Advances in Laser Science—IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), pp. 548–553.
  13. J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991).
  14. B. A. Palmer, R. A. Keller, and R. Engleman, Jr., “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. M., 1980).
  15. B. A. Palmer and R. Engleman, Jr., “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. M., 1983).
  16. T. A. Littlefield and A. Wood, “Interferometric wavelengths of thorium lines between 9050 and 2566 Å,” J. Opt. Soc. Am. 55, 1509–1516 (1965).
  17. W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Stand., Sect. A 69, 109–118 (1965).
  18. A. Giacchetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474–489 (1970).
  19. J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046–1049 (1979).
  20. B. Barbieri and N. Beverini, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited