OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1766–1772

When the space curvature dopes the radiant intensity

Philippe Ben-Abdallah  »View Author Affiliations

JOSA B, Vol. 19, Issue 8, pp. 1766-1772 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light experiences matter as an effective curved space–time. With such a geometrization of the underlying background of electromagnetic waves, I derive and discuss the general form of the radiative-transfer equation in any weakly absorbing, linear or not, static or in motion, participating media. The role played by the geometry of the effective space–time on the energetic balance is highlighted, and, in particular, it is demonstrated that the curvature can give rise to an amazing amplifying effect on the radiant intensity even in the presence of absorption. An application on the problem of expanding dielectric envelopes shows the simplicity of such an approach for solving numerous radiation hydrodynamic problems.

© 2002 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics

Philippe Ben-Abdallah, "When the space curvature dopes the radiant intensity," J. Opt. Soc. Am. B 19, 1766-1772 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Dalfovo, S. Giorgini, L. P. Pitaevski, and S. Stringari, “Theory of Bose–Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463–512 (1999). [CrossRef]
  2. W. G. Unruh, “Sonic analogue of black holes and the effects of high frequencies on black hole evaporation,” Phys. Rev. D 51, 2827–2838 (1995). [CrossRef]
  3. N. B. Kopnin and G. E. Volovik, “Critical velocity and event horizon in pair-correlated systems with relativistic fermionic quasiparticles,” JETP Lett. 67, 140–145 (1998). [CrossRef]
  4. M. Visser, “Acoustic black holes: horizon, ergospheres, and Hawking radiation,” Class. Quantum Grav. 15, 1767–1792 (1998). [CrossRef]
  5. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic black holes in dilute Bose–Einstein condensates,” Phys. Rev. A 63, 023611 (2001). [CrossRef]
  6. L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, “Sonic analog of gravitational black holes in Bose–Einstein condensates,” Phys. Rev. Lett. 85, 4643–4647 (2000). [CrossRef] [PubMed]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  8. U. Leonhardt and P. Piwnicki, “Relativistic effects of light in moving media with extremely low group velocity,” Phys. Rev. Lett. 84, 822–825 (2000). [CrossRef] [PubMed]
  9. W. Dittrich and H. Gies, “Light propagation in nontrivial QED vacua,” Phys. Rev. D 58, 025004 (1998). [CrossRef]
  10. S. Liberati, S. Sonego, and M. Visser, “Scharnhorst effect at oblique incidence,” Phys. Rev. D 63, 085003 (2001). [CrossRef]
  11. M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert, “Geometrical aspect of light propagation in nonlinear electrodynamics,” Phys. Rev. D 61, 045001 (2000). [CrossRef]
  12. M. Novello and J. M. Salim, “Effective electromagnetic geometry,” Phys. Rev. D 63, 083511 (2001). [CrossRef]
  13. U. Leonhardt and P. Piwnicki, “Optics of nonuniformly moving media,” Phys. Rev. A 60, 4301–4312 (1999). [CrossRef]
  14. Ulf Leonhardt, “Space–time geometry of quantum dielectrics,” Phys. Rev. A 62, 012111 (2000). [CrossRef]
  15. T. A. Jacobson and G. E. Volovik, “Effective spacetime and Hawking radiation from a moving domain wall in a thin film of 3He-A,” JETP Lett. 68, 874–880 (1998). [CrossRef]
  16. G. Befeki, Radiation Processes in Plasmas (Wiley, New York, 1966).
  17. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
  18. P. M. Alsing, “The optical-mechanical analogy for stationary metrics in general relativity,” Am. J. Phys. 66, 779–790 (1998). [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, UK, 1997).
  20. D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Dover, New York, 1999).
  21. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  22. P. Ben-Abdallah, “Radiative transfer in static and spherically symmetric distorting media: from the effective geometry to a kinetic theory,” J. Quant. Spectrosc. Radiat. Transf. 73, 69–90 (2002). [CrossRef]
  23. L. Landau and E. Lifshitz, Electrodynamique des Milieux Continues (Mir, Moscow, 1981).
  24. V. A. De Lorenci and M. A. Souza, “Electromagnetic wave propagation inside a material medium: an effective geometry interpretation,” Phys. Lett. B 512, 417–422 (2001). [CrossRef]
  25. C. H. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).
  26. A. Einstein, H. Lorentz, A. Minkowsky, and H. Weyl, The Principle of Relativity (collected papers) (Dover, New York, 1952).
  27. I. T. Drummond and S. J. Hathrell, “Quantum vacuum polarization in a background gravitational field and its effect on the velocity of photons,” Phys. Rev. D 22, 343–355 (1980). [CrossRef]
  28. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited