OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1794–1800

Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping

C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli  »View Author Affiliations

JOSA B, Vol. 19, Issue 8, pp. 1794-1800 (2002)

View Full Text Article

Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectroscopic properties and laser operation of a new neodymium-doped vanadate crystal, Nd:LuVO4, grown by the flux technique are reported. Polarized absorption and emission spectra were recorded at low and room temperatures, excited-state absorption was measured near 1060 and 1340 nm, and laser emission at 1066 nm was obtained after pumping near 809 and 880 nm.

© 2002 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, "Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping," J. Opt. Soc. Am. B 19, 1794-1800 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. DeShazer, “Vanadate crystals exploit diode-pump technology,” Laser Focus World, 88–93 (1994).
  2. R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
  3. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Sr5(VO4)3F,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 41–52.
  4. E. P. Maldonado, N. U. Wetter, I. M. Ranieri, E. A. Barbosa, L. C. Courrol, and N. D. Viera, Jr., “Crystal growth, spectroscopy and high-power diode-pumped cw laser operation of a new laser medium: Nd:Lu:YLF,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), pp. 642–646.
  5. M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
  6. M. Laroche, “Matériaux dopés Ce3+ et Pr3+ pour laser UV accordable tout-solide: croissance cristalline, spectroscopie dans les états excités, fonctionnement laser,” doctoral dissertation (Université de Caen, Caen, France, 2001).
  7. N. Sarukura, M. A. Dubinskii, Z. Liu, V. Semashko, A. K. Naumov, S. L. Korableva, R. Y. Abdulsabirov, K. Edamatsdu, Y. Suzuki, T. Itoh, and Y. Segawa, “Ce3+-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping,” IEEE J. Sel. Top. Quantum Electron. 1, 792–804 (1995).
  8. P. Rambaldi, R. Moncorgé, S. Girard, J. P. Wolf, C. Pédrini, and J. Y. Gesland, “Efficient UV laser operation of Ce:LiLuF4 single crystal,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.), pp. 10–12.
  9. E. D. Filer, C. A. Morrison, N. P. Barnes, and B. M. Walsh, “YLF isomorphs for Ho and Tm laser applications,” in Advanced Solid State Lasers, T. Y. Fan and B. H. T. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.
  10. N. P. Barnes, “Physics of quasi-four-level lasers,” in Solid State Lasers and Nonlinear Crystals, G. J. Quarles, L. Esterowitz, and L. K. Cheng, eds., Proc. SPIE 2379, 2–9 (1995).
  11. O. Guillot-Noel, B. Bellamy, B. Viana, and D. Gourier, “Correlation between rare-earth oscillator strengths and rare-earth-valence-band interactions in neodymium-doped YMO4 (M=V, P, s), Y3Al5O12 and LiYF4 matrices,” Phys. Rev. B 60, 1668–1677 (1999).
  12. C. Pédrini, D. Bouttet, C. Dujardin, A. Belsky, and A. Vasil’ev, “Energy transfer and quenching processes in cerium-doped scintillators,” in Proceedings of the International Conference on Inorganic Scintillators and Their Applications SCINT95 (Delft U. Press, Delft, The Netherlands, 1996), pp. 103–110.
  13. C. Dujardin, C. Pedrini, J. C. Ga⁁con, A. G. Petrosyan, A. N. Belsky, and A. N. Vasil’ev, “Luminescence properties and scintillation mechanisms of cerium- and praseodymium-doped lutetium orthoaluminate,” J. Phys.: Condens. Matter 9, 5229–5243 (1997).
  14. G. Garton, S. H. Smith, and B. M. Wanklyn, “Crystal growth from the flux systems PbO–V2O5 and Bi2O3–V2O5,” J. Crystal Growth 13–14, 588–592 (1972).
  15. A. Dabkowski, H. Dabkowska, and G. Jasiolek, “Single crystal growth conditions and characterization of some rare-earth vanadates,” J. Less-Common Met. 110, 255–257 (1985).
  16. Y. Terada, K. Shimamura, V. V. Kochurikhin, L. V. Baraskov, M. A. Ivanov, and T. Fukuda, “Growth and optical properties of ErVO4 and LuVO4 single crystals,” J. Crystal Growth 167, 369–372 (1996).
  17. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968).
  18. P. A. Tanner and N. Edelstein, “Infrared luminescence spectrum and crystal-field analysis of neodymium-doped yttrium vanadate,” Chem. Phys. Lett. 152, 140 (1988).
  19. T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
  20. R. Lavi, S. Jackel, A. Tal, E. Lebiush, I. Tzuk, and S. Goldring, “885 nm high-power diodes end-pumped Nd:YAG laser,” Opt. Commun. 195, 427–430 (2001).
  21. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
  22. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
  23. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  24. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  25. F. S. Ermeneux, C. Goutaudier, R. Moncorgé, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B 61, 3915–3921 (2000).
  26. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
  27. P. Le Boulanger, J. L. Doualan, S. Girard, J. Marjeric, and R. Moncorgé, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11, 380–11, 390 (1999).
  28. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. 2. YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B 67, 549–553 (1998).
  29. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998).
  30. Y. F. Chen, C. C. Liao, Y. P. Lan, and S. C. Wang, “Determination of the Auger upconversion rate in fiber-coupled diode end-pumped Nd:YAG and Nd:YVO4 crystals,” Appl. Phys. B 70, 487–490 (2000).
  31. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorge, “Excited-state absorption and up-conversion losses in the Nd-doped glasses for high-power lasers,” Phys. Rev. B 62, 4459–4463 (2000).
  32. T. Förster, “Zwischenmolekulare energiewanderung und fluorescenz,” Ann. Phys. (Leipzig) 2, 55 (1948).
  33. Y. Guyot, H. Manaa, J. Y. Guyot, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, “Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,” Phys. Rev. B 51, 784–799 (1995).
  34. R. Lavi, S. Jackel, M. Winik, E. Lebiush, I. Tzuk, M. Katz, and I. Paiss, “An efficient pumping scheme for neodymium doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
  35. R. Lavi and S. Jackel, “Thermally boosted pumping of neodymium lasers,” Appl. Opt. 39, 3093–3098 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited