OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1822–1829

Photorefractive properties of lithium and copper in-diffused lithium niobate crystals

Jörg Imbrock, Albert Wirp, Detlef Kip, Eckhard Krätzig, and Dirk Berben  »View Author Affiliations


JOSA B, Vol. 19, Issue 8, pp. 1822-1829 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001822


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-stoichiometric copper-doped lithium niobate crystals are fabricated by in-diffusion of thin layers of evaporated copper and a subsequent vapor transport equilibration treatment. The crystals are heated in a Li-rich atmosphere to increase the Li content. To determine the photorefractive properties, holographic as well as electrical measurements are performed. Saturation values of the refractive-index changes ΔnS, bulk photovoltaic current densities jphv, photoconductivities σph, and holographic sensitivities S are measured for light intensities up to 104 W/m2. Comparison with experimental data of congruent crystals indicates that the specific photoconductivity is 15 times larger after a vapor transport equilibration treatment. The specific bulk photovoltaic coefficient β* is 2 times larger, refractive-index changes are 7 times smaller, and the holographic sensitivity is up to 4 times larger.

© 2002 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(210.2860) Optical data storage : Holographic and volume memories

Citation
Jörg Imbrock, Albert Wirp, Detlef Kip, Eckhard Krätzig, and Dirk Berben, "Photorefractive properties of lithium and copper in-diffused lithium niobate crystals," J. Opt. Soc. Am. B 19, 1822-1829 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-8-1822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2418–2421 (1998). [CrossRef]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000), Vol. 76.
  3. P. F. Bordui, R. G. Norwood, C. D. Bird, and G. D. Calvert, “Compositional uniformity in growth and poling of large-diameter lithium niobate crystals,” J. Cryst. Growth 113, 61–68 (1991). [CrossRef]
  4. E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980). [CrossRef]
  5. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999). [CrossRef]
  6. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion,” Phys. Rev. B 61, 4615–4620 (2000). [CrossRef]
  7. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B 42, 61–68 (1986). [CrossRef]
  8. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Optical properties of lithium-rich lithium niobate fabricated by vapor transport equilibration,” IEEE J. Quantum Electron. 26, 135–138 (1990). [CrossRef]
  9. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, “Preparation and characterization of off-congruent lithium niobate crystals,” J. Appl. Phys. 71, 875–879 (1992). [CrossRef]
  10. D. H. Jundt, M. M. Fejer, R. G. Norwood, and P. F. Bordui, “Composition dependence of lithium diffusivity in lithium niobate at high temperature,” J. Appl. Phys. 72, 3468–3473 (1992). [CrossRef]
  11. J. Hukriede, B. Gather, D. Kip, and E. Krätzig, “Copper diffusion into lithium niobate,” Phys. Status Solidi A 172, R3 (1999). [CrossRef]
  12. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997). [CrossRef]
  13. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70, 2801–2803 (1997). [CrossRef]
  14. D. Redfield and W. J. Burke, “Optical absorption edge of LiNbO3,” J. Appl. Phys. 45, 4566–4571 (1974). [CrossRef]
  15. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997). [CrossRef]
  16. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  17. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985). [CrossRef]
  18. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  19. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996). [CrossRef]
  20. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]
  21. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972). [CrossRef]
  22. K. L. Sweeney and L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983). [CrossRef]
  23. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000). [CrossRef]
  24. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  25. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998). [CrossRef]
  26. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  27. O. F. Schirmer, O. Thiemann, and M. Wöhlecke, “Defects in LiNbO3—I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–189 (1991). [CrossRef]
  28. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, “Characterization of stoichiometric LiNbO3 grown from melts containing K2O,” Appl. Phys. A 56, 103–108 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited