OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1865–1872

Four-wave mixing in one-dimensional photonic crystals: inhomogeneous-wave excitation

Anatoli V. Andreev, Alexei V. Balakin, Alexander B. Kozlov, Ilya A. Ozheredov, Ilya R. Prudnikov, Alexander P. Shkurinov, Pascal Masselin, and Gael Mouret  »View Author Affiliations


JOSA B, Vol. 19, Issue 8, pp. 1865-1872 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001865


View Full Text Article

Acrobat PDF (208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what is to our knowledge the first study of nonlinear four-wave mixing in one-dimensional photonic crystals. The possibility of inhomogeneous-wave excitation at the four-wave mixing frequency ω<sub>3</sub>=2ω<sub>1</sub>− ω<sub>2</sub> for two noncollinear beams of femtosecond laser pulses is demonstrated. As a result of this effect the wave at the frequency of four-wave mixing may be guided along the surface of the photonic crystal. Experiments of this type open the possibility of development of a new tool based on photonic crystal devices for coherent Raman spectroscopy of surfaces and of nanometer and submicrometer scale layers.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

Citation
Anatoli V. Andreev, Alexei V. Balakin, Alexander B. Kozlov, Ilya A. Ozheredov, Ilya R. Prudnikov, Alexander P. Shkurinov, Pascal Masselin, and Gael Mouret, "Four-wave mixing in one-dimensional photonic crystals: inhomogeneous-wave excitation," J. Opt. Soc. Am. B 19, 1865-1872 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-8-1865


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. A. Yariv and P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation (Wiley, New York, 1984).
  3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  4. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  6. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Berto-lotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Disper-sive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
  7. I. S. Fogel, J. M. Bendickson, M. D. Tocci, M. J. Bloemer, M. Scalora, C. M. Bowden, and J. P. Dowling, “Spontaneous emission and nonlinear effects in photonic bandgap materials,” Pure Appl. Opt. 7, 393–407 (1998).
  8. A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Masselin, and G. Mouret, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602–1-9 (2001).
  9. N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–485 (1970).
  10. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  11. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
  12. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999).
  13. T. V. Dolgova, A. I. Maidykovskii, M. G. Martemyanov, G. Marovskii, G. Mattei, D. Schumacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001).
  14. R. L. Nelson and R. W. Boyd, “Enhanced third-order nonlinear optical response of photonic bandgap materials,” J. Mod. Opt. 46, 1061–1069 (1999).
  15. T. V. Dolgova, A. I. Maidykovskii, M. G. Martemyanov, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant third harmonic in porous silicon photonic crystals and microcavities,” JETP Lett. 75, 15–19 (2002).
  16. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
  17. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, “Enhancement of sum frequency generation near the photonic band gap edge under the quasi-phase matching conditions,” Phys. Rev. E 63, 046609–1-10 (2001).
  18. S. J. Szyzak, W. M. Baker, R. C. Crane, and J. B. Howe, “Refractive indexes of single synthetic zinc sulfide and cadmium sulfade crystals,” J. Opt. Soc. Am. 47, 240–243 (1957).
  19. K. H. Hellwege, ed., Crystal Structure Data of Inorganic Compounds, Vol. 7 of Landolt–Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series. Groupe III: Crystal and Solid State Physics (Springer-Verlag, Berlin, 1973), part a, p. 13.
  20. L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
  21. G. I. Stegeman, R. Fortenberry, C. Karaguleff, R. Moshrefzadeh, W. M. Hetherington III, N. E. van Wyck, and J. E. Sipe, “Coherent anti-Stokes Raman scattering in thin-film dielectric waveguides,” Opt. Lett. 8, 295–297 (1983).
  22. A. Fainstein and B. Jusserand, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764–3767 (1995).
  23. A. V. Balakin, D. Boucher, E. Fertein, P. Masselin, A. V. Pakulev, A. Yu. Resniansky, A. P. Shkurinov, and N. I. Koroteev, “Experimental observation of the interference of three- and five-wave mixing processes into the signal of second harmonic generation in bacteriorhodopsine solution,” Opt. Commun. 141, 343–352 (1997).
  24. A. P. Shkurinov, N. I. Koroteev, G. Jonusauskas, and C. Rulliere, “Subpicosecond anisotropic CARS studies of vibrational mode-selective photoexcitation and relaxation of trans-stilbene: first few picoseconds,” Chem. Phys. Lett. 223, 573–580 (1994).
  25. S. M. Rytov, “Electromagnetic properties of finite media,” Sov. Phys. JETP 2, 466–477 (1956).
  26. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E 64, 016609–1-9 (2001).
  27. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited