OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1890–1900

Frequency-dependent first hyperpolarizabilities from linear absorption spectra

Anne Myers Kelley  »View Author Affiliations

JOSA B, Vol. 19, Issue 8, pp. 1890-1900 (2002)

View Full Text Article

Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The first hyperpolarizabilities (β) of donor–acceptor-substituted push–pull molecules are generally described by a model in which the lowest excited electronic state dominates the optical response. It is shown that within the usual assumptions accompanying this two-state model, β(−2ω; ω, ω) can be expressed in terms of a Kramers–Kronig transform of the linear optical absorption spectrum. The method is applied to p–nitroaniline and several other push–pull chromophores, and results are compared with experimental data where available. Comparison of calculated and measured frequency dispersions is suggested as a purely experimental method, requiring no additional parameters, to test the assumptions of the two-state model.

© 2002 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Anne Myers Kelley, "Frequency-dependent first hyperpolarizabilities from linear absorption spectra," J. Opt. Soc. Am. B 19, 1890-1900 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. Molecular Nonlinear Optics: Materials, Physics, and Devices, J. Zyss, ed. (Academic, Boston, Mass., 1993).
  3. M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, and R. Wortmann, “Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability,” Chem.-Eur. J. 3, 1091–1104 (1997).
  4. S. R. Marder, D. N. Beratan, and L.-T. Cheng, “Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules,” Science 252, 103–106 (1991).
  5. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K.-Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999).
  6. M. H. Davey, V. Y. Lee, L.-M. Wu, C. R. Moylan, W. Volksen, A. Knoesen, R. D. Miller, and T. J. Marks, “Ultrahigh-temperature polymers for second-order nonlinear optics. Synthesis and properties of robust, processable, chromophore-embedded polyimides,” Chem. Mater. 12, 1679–1693 (2000).
  7. M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995).
  8. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2001).
  9. M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: A poled polymer with a large electro-optic coefficient,” Science 271, 335–337 (1996).
  10. Y.-C. Shu, Z.-H. Gong, C.-F. Shu, E. M. Breitung, R. J. McMahon, G.-H. Lee, and A. K.-Y. Jen, “Synthesis and characterization of nonlinear optical chromophores with conformationally locked polyenes possessing enhanced thermal stability,” Chem. Mater. 11, 1628–1632 (1999).
  11. S. Thayumanavan, J. Mendez, and S. R. Marder, “Synthesis of functionalized organic second-order nonlinear optical chromophores for electro-optic applications,” J. Org. Chem. 64, 4289–4297 (1999).
  12. G. Rojo, F. Agulló-López, B. Cabezón, T. Torres, S. Brasselet, I. Ledoux, and J. Zyss, “Noncentrosymmetric triazolephthalocyanines as second-order nonlinear optical chromophores,” J. Phys. Chem. B 104, 4295–4299 (2000).
  13. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, “Second-order nonlinear optical organic materials: Recent developments,” in Nonlinear Optical Effects and Materials, P. Günter, ed. (Springer-Verlag, Berlin, 2000), pp. 163–299.
  14. C. Bosshard, “Third-order nonlinear optics in polar materials,” in Nonlinear Optical Effects and Materials, P. Günter, ed. (Springer-Verlag, Berlin, 2000) pp. 7–161.
  15. E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
  16. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66, 2664–2668 (1977).
  17. R. Cammi, B. Mennucci, and J. Tomasi, “Solvent effects on linear and nonlinear optical properties of donor-acceptor polyenes: Investigation of electronic and vibrational components in terms of structure and charge distribution changes,” J. Am. Chem. Soc. 120, 8834–8847 (1998).
  18. C. H. Wang, “Effects of dephasing and vibronic structure on the first hyperpolarizability of strongly charge-transfer molecules,” J. Chem. Phys. 112, 1917–1924 (2000).
  19. G. Berkovic, G. Meshulam, and Z. Kotler, “Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime,” J. Chem. Phys. 112, 3997–4003 (2000).
  20. A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
  21. A. M. Moran, D. S. Egolf, M. Blanchard-Desce, and A. M. Kelley, “Vibronic effects on solvent dependent linear and nonlinear optical properties of push-pull chromophores: julolidinemalononitrile,” J. Chem. Phys. 116, 2542–2555 (2002).
  22. A. M. Moran, C. Delbecque, and A. M. Kelley, “Solvent effects on ground and excited electronic state structures of the push-pull chromophore julolidinyl-n-N, Ndiethylthiobarbituric acid,” J. Phys. Chem. A 105, 10208–10219 (2001).
  23. A. M. Moran and A. M. Kelley, “Solvent effects on ground and excited electronic state structures of p-nitroaniline,” J. Chem. Phys. 115, 912–924 (2001).
  24. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  25. B. R. Stallard, P. M. Champion, P. R. Callis, and A. C. Albrecht, “Advances in calculating Raman excitation profiles by means of the transform theory,” J. Chem. Phys. 78, 712–722 (1983).
  26. A. Willetts, J. E. Rice, D. M. Burland, and D. P. Shelton, “Problems in the comparison of theoretical and experimental hyperpolarizabilities,” J. Chem. Phys. 97, 7590–7599 (1992).
  27. F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: Differences between nonspecific dipole–dipole interactions and solute–solvent H-bonds,” J. Chem. Phys. 108, 8161–8171 (1998).
  28. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971).
  29. D. M. Bishop and B. Kirtman, “A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities,” J. Chem. Phys. 95, 2646–2658 (1991).
  30. H.-S. Kim, M. Cho, and S.-J. Jeon, “Vibrational contributions to the molecular first and second hyperpolarizabilities of a push–pull polyene,” J. Chem. Phys. 107, 1936–1940 (1997).
  31. B. Champagne, J. M. Luis, M. Duran, J. L. Andrés, and B. Kirtman, “Anharmonicity contributions to the vibrational second hyperpolarizability of conjugated oligomers,” J. Chem. Phys. 112, 1011–1019 (2000).
  32. B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996).
  33. C. Castiglioni, M. Del Zoppo, and G. Zerbi, “Molecular first hyperpolarizability of push–pull polyenes: Relationship between electronic and vibrational contribution by a two-state model,” Phys. Rev. B 53, 13319–13325 (1996).
  34. D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push–pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109, 9987–9994 (1998).
  35. M. Cho, “Vibrational characteristics and vibrational contributions to the nonlinear optical properties of a push–pull polyene in solution,” J. Phys. Chem. A 102, 703–707 (1998).
  36. D. Yaron and R. Silbey, “Vibrational contributions to third-order nonlinear optical susceptibilities,” J. Chem. Phys. 95, 563–568 (1991).
  37. V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push–pull polymers,” Chem. Phys. Lett. 319, 261–264 (2000).
  38. A. B. Myers, “Excited electronic state properties from ground-state resonance Raman intensities,” in Laser Techniques in Chemistry, A. B. Myers and T. R. Rizzo, eds. (Wiley, New York, 1995) pp. 325–384.
  39. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules (VCH, New York, 1995).
  40. C. K. Chan and J. B. Page, “Temperature effects in the time-correlator theory of resonance Raman scattering,” J. Chem. Phys. 79, 5234–5250 (1983).
  41. K. T. Schomacker, O. Bangcharoenpaurpong, and P. M. Champion, “Investigations of the Stokes and anti-Stokes resonance Raman scattering of cytochrome-c,” J. Chem. Phys. 80, 4701–4717 (1984).
  42. K. T. Schomacker and P. M. Champion, “Investigations of spectral broadening mechanisms in biomolecules: cytochrome-c,” J. Chem. Phys. 84, 5314–5325 (1986).
  43. A. B. Myers and R. A. Mathies, “Resonance Raman intensities: a probe of excited-state structure and dynamics,” in Biological Applications of Raman Spectroscopy, T. G. Spiro, ed., (Wiley, New York, 1987) Vol. 2, pp. 1–58.
  44. C. C. Teng and A. F. Garito, “Dispersion of the nonlinear second-order optical susceptibility of an organic system: p-nitroaniline,” Phys. Rev. Lett. 50, 350–352 (1983).
  45. C. C. Teng and A. F. Garito, “Dispersion of the nonlinear second-order optical susceptibility of organic systems,” Phys. Rev. B 28, 6766–6773 (1983).
  46. M. Stähelin, D. M. Burland, and J. E. Rice, “Solvent dependence of the second order hyperpolarizability in p-nitroaniline,” Chem. Phys. Lett. 191, 245–250 (1992).
  47. P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh light scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
  48. V. M. Farztdinov, R. Schanz, S. A. Kovalenko, and N. P. Ernsting, “Relaxation of optically excited p-nitroaniline: Semiempirical quantum-chemical calculations compared to femtosecond experimental results,” J. Phys. Chem. A 104, 11486–11496 (2000).
  49. M. Blanchard-Desce, R. Wortmann, S. Lebus, J.-M. Lehn, and P. Krämer, “Intramolecular charge transfer in elongated donor-acceptor conjugated polyenes,” Chem. Phys. Lett. 243, 526–532 (1995).
  50. V. Alain, L. Thouin, M. Blanchard-Desce, U. Gubler, C. Bosshard, P. Günter, J. Muller, A. Fort, and M. Barzoukas, “Molecular engineering of push–pull phenylpolyenes for nonlinear optics: improved solubility, stability, and nonlinearities,” Adv. Mater. 11, 1210–1214 (1999).
  51. C.-C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, “Dispersion of the first hyperpolarizability of a strongly charge-transfer chromophore investigated by tunable wavelength hyper-Rayleigh scattering,” J. Chem. Phys. 114, 7103–7108 (2001).
  52. J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, “Hyper-Rayleigh scattering of azulenic donor-acceptor molecules at 1064 and 1907 nm,” J. Chem. Phys. 111, 4621–4628 (1999).
  53. A. E. Asato, Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (personal communication, 2001).
  54. M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
  55. O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
  56. S. Stadler, G. Bourhill, and C. Bräuchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic chromophores,” J. Phys. Chem. 100, 6927–6934 (1996).
  57. M. Del Zoppo, M. Tommasini, C. Castiglioni, and G. Zerbi, “A relationship between Raman and infrared spectra: the case of push–pull molecules,” Chem. Phys. Lett. 287, 100–108 (1998).
  58. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited