OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 8 — Aug. 1, 2002
  • pp: 1930–1940

ac-Stark autocorrelator for ultrafast laser pulses

Timothy W. Schmidt, Thomas Feurer, Rodrigo B. López-Martens, and Gareth Roberts  »View Author Affiliations

JOSA B, Vol. 19, Issue 8, pp. 1930-1940 (2002)

View Full Text Article

Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ac-Stark shift of the A 2Σ+ n=2←X 2Πr n=0 two-photon Bohr resonance of nitric oxide at 409.8 nm is utilized to autocorrelate intense, ultrashort optical pulses at 400 nm. When they are temporally and spatially overlapped, two identical pulses shift the absorption into transient resonance with the applied two-photon energy. Interferometric autocorrelation traces are obtained by detection of A 2Σ+ n=2→X 2Πr n=2 fluorescence as a function of the time delay between the two pulses: The method is background free and highly nonlinear. Experimental measurements are simulated through solutions to the time-dependent Schrödinger equation for one-dimensional motion of an electron in an electric field, which procedure yields a measure of the incident pulse width.

© 2002 Optical Society of America

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7150) Ultrafast optics : Ultrafast spectroscopy

Timothy W. Schmidt, Thomas Feurer, Rodrigo B. López-Martens, and Gareth Roberts, "ac-Stark autocorrelator for ultrafast laser pulses," J. Opt. Soc. Am. B 19, 1930-1940 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. Iaconis and I. A. Walmsley, “Spectral phase interferometer for direct electric-field reconstruction,” Opt. Lett. 23, 792–794 (1998).
  2. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort laser pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32, 1253–1264 (1994).
  3. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
  4. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified ultrashort pulse measurement,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2001), pp. 123–125.
  5. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Increased bandwidth in ultrashort-pulse measurement using an angle-dithered nonlinear-optical crystal,” Opt. Express 7, 342–349 (2000), http://www.opticsexpress.org.
  6. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10 fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
  7. H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics,” J. Appl. Phys. 38, 2231–2234 (1967).
  8. For a recent extension of this approach and its connection to FROG see C. Radzewicz, P. Wasylczyk, and J. S. Krasinksi, “A poor man’s FROG,” Opt. Commun. 186, 329–333 (2000).
  9. E. S. Kintzer and C. Rempel, “Near-surface second-harmonic generation for autocorrelation measurements in the UV,” Appl. Phys. B 42, 91–95 (1987).
  10. E. J. Cantosaid, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si(111) for autocorrelation measurements of 248 nm femtosecond pulses,” Opt. Lett. 18, 2038–2040 (1993).
  11. See, for example, J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pschenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
  12. See, for example, P. Loza-Alvaréz, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415–630 nm using GaN laser diode,” Electron. Lett. 36, 631–633 (2000).
  13. Y. Kobayashi, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “27 fs extreme ultraviolet pulse generation by high-order harmonics,” Opt. Lett. 23, 64–66 (1998).
  14. Y. Kobayashi, T. Ohno, T. Sekikawa, Y. Nabekawa, and S. Watanabe, “Pulse width measurement of high-order harmonics by autocorrelation,” Appl. Phys. B 70, 389–394 (2000).
  15. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
  16. S. P. Le Blanc, G. Szabo, and R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16, 1508–1510 (1991).
  17. H. Nishiok, M. Ishiguro, T. Kawasumi, K. Udea, and H. Takuma, “Single-shot UV autocorrelator that uses a two-photon-induced photoacoustic signal in water,” Opt. Lett. 18, 45–47 (1993).
  18. A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23, 790–800 (1998).
  19. H. S. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, and T. Schröder, “Single-shot measurement of ultraviolet and visible femtosecond pulses using the optical Kerr effect,” Appl. Opt. 32, 6659–6663 (1993).
  20. P. Heist and T. Kleinschmidt, “Measurement of ultraviolet subpicosecond pulses based on ultrafast beam deflection,” Opt. Lett. 19, 1961–1963 (1994).
  21. K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating using the electronic Kerr effect,” Appl. Phys. B 63, 485–489 (1996).
  22. A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8 fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
  23. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866–871 (2001).
  24. J. Peatross and A. Rundquist, “Temporal decorrelation of short laser pulses,” J. Opt. Soc. Am. B 15, 216–222 (1998).
  25. Some authors (e.g., in Ref. 34 below, p. 367) define an intensity correlation of order (n+1) as AnD)= ∫−∞ Is(t)Irn(t−τD)dt, for which Irn(t)→δ(t) and AnD)→Is(t) as n→∞, where Is(t)=|Es(t)|2 and Ir(t)= |Er(t)|2 are the signal and the reference pulse intensity envelopes, respectively.
  26. N. B. Delone and V. P. Krainov, “ac Stark shift of atomic energy levels,” Usp. Fiz. Nauk 42, 669–687 (1999).
  27. We write the fluorescence signal as SF[I(t)], as opposed to SF[I0], to emphasize excitation of fluorescent population throughout the entire pulse duration and to indicate the possibility of extracting I(t) from SF[I(t)], as discussed in Section 3 below.
  28. L. G. Piper and L. M. Cowles, “Einstein coefficients and transition moment variation for the NO(A 2Σ+–X 2Πr) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
  29. J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A 2Σ+–X 2Π and D 2Σ+–X 2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999), and references therein.
  30. R. B. López-Martens, T. W. Schmidt, and G. Roberts, “ac Stark shifts in Rydberg NO levels induced by intense laser pulses,” Phys. Rev. A 62, 013414:1–9 (2000).
  31. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990), Vol. 1, Chap. 4, pp. 268–274; Chap. 10, pp. 590–604.
  32. T. W. Schmidt, R. B. López-Martens, and G. Roberts, “Time-resolved spectroscopy of the dynamic Stark effect,” submitted to Phys. Rev. A.
  33. K. P. Huber and G. Herzberg, Molecular Structure and Molecular Spectra IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 466–480.
  34. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif. 1995), Chap. 1, pp. 9–10; Chap. 8, pp. 365–380.
  35. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Wörner, “Generation, shaping and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
  36. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
  37. For ease of analysis in detecting a total ion signal, the absorption of photons that results in population of divers Rydberg levels is probably best avoided; otherwise the Stark shifts of all such levels must be taken into account in the analysis. Owing to the ease by which highly excited Rydberg states close to the ionization potential are shifted into resonance during multiphoton absorption, we suspect that the present method, when it is combined with ion detection, may not be optimally applied to map out the transient response of lower-lying bound states to which multiphoton (above-threshold) resonance ionization processes are accessed en route to the departure of an electron.
  38. Z. H. Chang, A. Rundquist, H. W. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967–2970 (1997).
  39. P. Dietrich, F. Krausz, and P. B. Corkum, “Determining the absolute carrier phase of a few-cycle laser pulse,” Opt. Lett. 25, 16–18 (2000).
  40. M. Mehendale, S. A. Mitchell, J. P. Likforman, D. M. Villeneuve, and P. B. Corkum, “Method for single-shot measurement of the carrier envelope phase of a few-cycle laser pulse,” Opt. Lett. 25, 1672–1674 (2000).
  41. See, for example, A. Braun, J. V. Rudd, H. Cheng, G. Mourou, D. Kopf, I. D. Jung, K. J. Weingarten, and U. Keller, “Characterization of short-pulse oscillators bymeans of a high-dynamic-range autocorrelation measurement,” Opt. Lett. 20, 1889–1891 (1995).
  42. See, for example, I. D. Jung, F. X. Kärtner, J. Henkmann, G. Zhang, and U. Keller, “High-dynamic-range characterization of ultrashort pulses,” Appl. Phys. B 65, 307–310 (1997).
  43. P. H. Bucksbaum, R. R. Freeman, M. Bashkansky, and T. J. McIlrath, “Role of the ponderomotive potential in above-threshold ionization,” J. Opt. Soc. Am. B 4, 760–764 (1987).
  44. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987).
  45. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72, 1–29 (2001).
  46. For nitric oxide, and other gases, this information may be found in “Optische konstanten, part 8 of Eigenschaften der Materie in ihren Aggregatzuständen,” Landholt–Börnstein: Zahlenwerte und Funktion en aus Physik, Chenie, Astronomie, Geophysik und Technik, 6th ed., K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1962), Table 4a, pp. 6–882–6–884.
  47. See, for example, D. B. Milošević, S. Hu, and W. Becker, “Quantum mechanical model for ultrahigh-order harmonic generation in the moderately relativistic regime,” Phys. Rev. A 63, 011403(R):1–4 (2001).
  48. M. Brewczyk and K. Rzazewski, “Interaction of a multi-electron atom with intense radiation in the VUV range: beyond the conventional model for high harmonic generation,” J. Phys. B 34, L289–L296 (2001).
  49. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
  50. E. Constant, V. D. Taranukhin, A. Stolow, and P. B. Corkum, “Methods for the measurement of the duration of high-harmonic pulses,” Phys. Rev. A 56, 3870–3878 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited