OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 1982–1989

Spectroscopic and energy-transfer parameters for Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses

Daniel J. Coleman, Paul Golding, Terence A. King, and Stuart D. Jackson  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 1982-1989 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001982


View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption and emission spectra and the rate parameters for the important energy-exchange processes relevant to the  4I11/2  4I13/2 laser transition in Er3+-doped and Er3+,Pr3+-codoped GeGaS glasses are presented. The rate parameters are determined after optical excitation with a tunable pulsed optical parametric oscillator that excites the  4I11/2 and  4I13/2 energy levels directly. For the Er3+ singly doped samples, the energy-transfer upconversion (ETU) macroscopic rate parameters for the upper and lower laser levels were measured for a range of Er3+ concentrations. In correspondence with ZBLAN and the fluoride crystals, the (4I13/2, 4I13/2)(4I9/2, 4I15/2) ETU process of the lower laser level is measured to be stronger than the corresponding ETU process of the upper laser level. Such a condition enables energy recycling to occur. A higher rate of energy transfer from the  4I13/2 level of Er3+ to Pr3+ deactivator is measured as compared with the corresponding energy transfer from  4I11/2 level to both the Pr3+ deactivator and OH impurity. With these favorable energy-transfer conditions, the prospect for the future development of highly efficient ∼3-µm fiber lasers with GeGaS glass as the host material is excellent.

© 2002 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Citation
Daniel J. Coleman, Paul Golding, Terence A. King, and Stuart D. Jackson, "Spectroscopic and energy-transfer parameters for Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses," J. Opt. Soc. Am. B 19, 1982-1989 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-1982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Reisfeld, “Chalcogenide glasses doped by rare earths: structure and optical properties,” Ann. Chim. (Paris) 7, 147–160 (1982).
  2. J. Flahaut, M. Guittard, and A. M. Loireau-Lozac’h, “Rare-earth sulphide and oxysulphide glasses,” Glass Technol. 24, 149–156 (1983).
  3. P. N. Kumta and S. H. Risbud, “Rare-earth chalcogenides: an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994). [CrossRef]
  4. Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulfide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000). [CrossRef]
  5. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,” J. Non-Cryst. Solids 182, 257–261 (1995). [CrossRef]
  6. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3 μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994). [CrossRef] [PubMed]
  7. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996). [CrossRef]
  8. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Jeo, “Emission characteristics of Ge-Ga-S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996). [CrossRef]
  9. U. Keller and R. Hibst, “Effects of Er:YAG laser in caries treatment,” Lasers Surg. Med. 20, 32–38 (1997). [CrossRef]
  10. T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24, 87–94 (1995). [CrossRef]
  11. M. Frenz, H. Pratisto, F. Konz, E. Duco Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025–2036 (1996). [CrossRef]
  12. S. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993). [CrossRef] [PubMed]
  13. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser,” Opt. Lett. 26, 599–601 (2001). [CrossRef]
  14. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999). [CrossRef]
  15. Chr. Wyss, W. Luthy, H. P. Weber, P. Rogin, and J. Hulliger, “Emission properties of an optimised 2.8 μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997). [CrossRef]
  16. M. Pollnau, W. Luthy, H. P. Weber, T. Jensen, G. Huber, A. Cassanho, H. P. Jenssen, and R. A. McFarlane, “Investigation of diode-pumped 2.8-μm laser performance in Er:BaY2F8,” Opt. Lett. 21, 48–50 (1996). [CrossRef] [PubMed]
  17. S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999). [CrossRef]
  18. T. Sandrock, D. Fischer, P. Glas, M. Leitner, and M. Wrage, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.9 μm,” Opt. Lett. 24, 1284–1286 (1999). [CrossRef]
  19. B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999). [CrossRef] [PubMed]
  20. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000). [CrossRef]
  21. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibres for IR applications: a review,” J. Non-Cryst. Solids 256&257, 6–16 (1999). [CrossRef]
  22. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995). [CrossRef]
  23. K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 87.
  24. A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fibre,” Appl. Phys. Lett. 70, 1230–1232 (1997). [CrossRef]
  25. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jessen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996). [CrossRef]
  26. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997). [CrossRef]
  27. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000). [CrossRef]
  28. M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994). [CrossRef] [PubMed]
  29. V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993). [CrossRef]
  30. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999). [CrossRef]
  31. D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992). [CrossRef]
  32. S. H. Park, J. Heo, and H. S. Kim, “Composition depen-dence of the 1.3 μm emission and energy transfer mechanism in Ge-Ga-S glasses doped with Pr3+,” J. Non-Cryst. Solids 259, 31–38 (1999). [CrossRef]
  33. K. Wei, “Synthesis and characterization of rare earth doped chalcogenide glasses,” Ph.D. dissertation (Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1994), p. 116.
  34. R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, Proc. SPIE 1581, 72–79 (1991). [CrossRef]
  35. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994). [CrossRef] [PubMed]
  36. C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996). [CrossRef]
  37. P. France, Fluoride Glass Optical Fibres (Blackie, London, 1990).
  38. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  39. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  40. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–273 (1967). [CrossRef]
  41. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988). [CrossRef]
  42. Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO-Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 32, 2762–2768 (1999).
  43. Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, “Emission properties of the Er3+:4I11/24I13/2 transition in Er3+ and Er3+/Tm3+-doped Ge-Ga-As-S glasses,” J. Non-Cryst. Solids 278, 137–144 (2000). [CrossRef]
  44. Y. Guimond, J.-L. Adam, A.-M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, “Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,” J. Non-Cryst. Solids 256&257, 378–382 (1999). [CrossRef]
  45. T. Jensen, “Upconversion Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays” Ph.D. dissertation (Institute of Laser-Physics, University of Hamburg, Germany, 1996).
  46. P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+ and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000). [CrossRef]
  47. Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of Nd3+: 4F3/2 level in PbO-Bi2O3-Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).
  48. Y. G. Chio and J. Heo, “1.3 μm emission and multiphonon relaxation phenomena in PbO-Bi2O3-Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997). [CrossRef]
  49. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000). [CrossRef]
  50. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited