OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2007–2021

Calculation of nonlinear-susceptibility tensor components in ferroelectrics: cubic, tetragonal, and rhombohedral symmetries

Rajan Murgan, David R. Tilley, Yoshihiro Ishibashi, Jeff F. Webb, and Junaidah Osman  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 2007-2021 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002007


View Full Text Article

Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the formalism for the calculation of all second- and third-order nonlinear susceptibility coefficients based on the Landau–Devonshire free-energy expansion for cubic symmetry in the high-temperature paraelectric phase and the Landau–Khalatnikov dynamical equations. Second-order phase transition and single-frequency input waves are considered. Detailed results are given for all nonvanishing tensor elements of the second- and third-order nonlinear optical effects in the paraelectric and the tetragonal and rhombohedral ferroelectric phases.

© 2002 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

Citation
Rajan Murgan, David R. Tilley, Yoshihiro Ishibashi, Jeff F. Webb, and Junaidah Osman, "Calculation of nonlinear-susceptibility tensor components in ferroelectrics: cubic, tetragonal, and rhombohedral symmetries," J. Opt. Soc. Am. B 19, 2007-2021 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2007


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).
  2. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, UK, 1977).
  3. Y. Ishibashi and H. Orihara, “A phenomenological theory of nonlinear dielectric response,” Ferroelectrics 156, 185–188 (1994).
  4. J. Osman, Y. Ishibashi, S.-C. Lim, and D. R. Tilley, “Nonlinear optic coefficients in the ferroelectric phase,” J. Korean Phys. Soc. 32, S446–S449 (1998).
  5. C. Haas, “Phase transitions in ferroelectric and antiferroelectric crytals,” Phys. Rev. 140, A863–A868 (1965).
  6. J. Osman, Y. Ishibashi, and D. R. Tilley, “Calculation of nonlinear susceptibility tensor components in ferroelectrics,” Jpn. J. Appl. Phys. 37, 4887–4893 (1998).
  7. J. Grindlay, An Introduction to the Phenomenological Theory of Ferroelectricity (Pergamon, New York, 1970).
  8. A. F. Devonshire, “Theory of barium titanate (Part 1),” Philos. Mag. 40, 1040–1063 (1949).
  9. K. Fujita and Y. Ishibashi, “Roles of the higher order aniso-tropic terms in successive structural phase transitions: The method of determination of phenomenological parameters,” Jpn. J. Appl. Phys., 36, 254–259 (1997).
  10. Y. Ishibashi and M. Iwata, “Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics,” Jpn. J. Appl. Phys. 37, L985–L987 (1998).
  11. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, Cambridge, UK 1990).
  12. H. Orihara and Y. Ishibashi, “A phenomenological theory of nonlinear dielectric response II. Miller’s rule and nonlinear response in nonferroelectrics,” J. Phys. Soc. Jpn. 66, 242–246 (1997).
  13. S. V. Popov, Yu. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (Institute of Physics, London, 1995).
  14. Y. G. Wang, W. L. Zhong, and P. L. Zhang, “Size effects onthe Curie temperature of ferroelectric particles,” Solid State Commun. 92, 519–523 (1994).
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  16. D. L. Mills, Nonlinear Optics (Springer-Verlag, Berlin, 1991).
  17. Y. Ishibashi and M. Iwata, “A theory of morphotropic phase boundary in solid-solution systems of perovskite-type oxide ferroelectrics,” Jpn. J. Appl. Phys. 38, 800–804 (1999).
  18. M. Iwata and Y. Ishibashi, “Theory of morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics: engineered domain configurations,” Jpn. J. Appl. Phys. 39, 5156–5163 (2000).
  19. L. Gag, J. Osman, and D. R. Tilley, “Effective-medium theory of dielectric-constant anomalies in ferroelectric composites,” Ferroelectrics 255, 59–72 (2001).
  20. E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, Amsterdam, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited