OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2022–2031

Ultrafast pump–probe dynamics in ZnSe-based semiconductor quantum wells

H. Ouerdane, G. Papageorgiou, I. Galbraith, A. K. Kar, and B. S. Wherrett  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2022-2031 (2002)

View Full Text Article

Acrobat PDF (209 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pump–probe experiments are used as a controllable way to investigate the properties of photoexcited semiconductors, in particular, the absorption saturation. We present an experiment–theory comparison for ZnSe quantum wells, investigating the energy renormalization and bleaching of the excitonic resonances. Experiments were performed with spin-selective excitation and above-bandgap pumping. The model, based on the semiconductor Bloch equations in the screened Hartree–Fock approximation, takes various scattering processes into account phenomenologically. Comparing numerical results with available experimental data, we explain the experimental results and find that the electron spin-flip occurs on a time scale of 30 ps.

© 2002 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.0320) Ultrafast optics : Ultrafast optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

H. Ouerdane, G. Papageorgiou, I. Galbraith, A. K. Kar, and B. S. Wherrett, "Ultrafast pump–probe dynamics in ZnSe-based semiconductor quantum wells," J. Opt. Soc. Am. B 19, 2022-2031 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993), and references therein.
  2. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals (Springer-Verlag, Berlin, 1999).
  3. S. Schmitt-Rink, C. Ell, and H. Haug, “Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum-well structures,” Phys. Rev. B 33, 1183–1189 (1986).
  4. R. Binder, I. Galbraith, and S. W. Koch, “Theory of band-edge optical nonlinearities in type-I and type-II quantum-well structures,” Phys. Rev. B 44, 3031–3042 (1991).
  5. M. J. Snelling, P. Perozzo, D. C. Hutchings, I. Galbraith, and A. Miller, “Investigation of excitonic saturation by time-resolved circular dichroism in GaAs–AlxGa1−xAs multiple quantum wells,” Phys. Rev. B 49, 17160–17169 (1994).
  6. M. Lindberg and S. W. Koch, “Effective Bloch equations for semiconductors,” Phys. Rev. B 38, 3342–3350 (1988).
  7. C. Ell, R. Blank, S. Benner, and H. Haug, “Simplified calculations of the optical spectra of two- and three-dimensional laser-excited semiconductors,” J. Opt. Soc. Am. B 6, 2006–2012 (1989).
  8. J. Shah, ed., Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic, San Diego, Calif., 1992).
  9. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier–carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45, 1107–1115 (1992).
  10. D. C. Scott, R. Binder, and S. W. Koch, “Ultrafast dephasing through acoustic plasmon undamping in nonequilibrium electron–hole plasmas,” Phys. Rev. Lett. 69, 347–350 (1992).
  11. F. Jahnke and S. W. Koch, “Ultrafast intensity switching and nonthermal carrier effects in semiconductor microcavity lasers,” Appl. Phys. Lett. 67, 2278–2280 (1995).
  12. F. Jahnke and S. W. Koch, “Many-body theory for semiconductor microcavity lasers,” Phys. Rev. A 52, 1712–1727 (1995).
  13. R. J. Elliott, “Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266–279 (1954).
  14. Y. Yaffet, Solid State Physics (Academic, New York, 1963).
  15. M. I. D’Yakonov and V. I. Perel, Sov. Phys. JETP 33, 1053–1073 (1971).
  16. T. C. Damen, L. Viña, J. E. Cunningham, and J. Shah, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67, 3432–3435 (1991).
  17. R. Ferreira and G. Bastard, “Spin-flip scattering of holes in semiconductor quantum wells,” Phys. Rev. B 43, 9687–9691 (1991).
  18. M. Potemski, E. Pérez, D. Martin, L. Viña, L. Gravier, A. Fisher, and K. Ploog, “Spin polarization of an optically pumped electron gas,” Solid State Commun. 110, 163–168 (1999).
  19. M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, “Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures,” Prog. Quantum Electron. 23, 189–279 (1999).
  20. E. Rosencher and B. Vinter, Optoélectronique (Thomson-CSF/Masson, Paris, 1998).
  21. R. Zimmermann, Many-Particle Theory of Highly Excited Semiconductors (Teubner, Berlin, 1988).
  22. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Éditions Physique, Les Ulis, 1988).
  23. F. Jahnke, M. Kira, S. W. Koch, G. Khitrova, E. K. Lindmark, T. R. Nelson, Jr., D. V. Wick, J. D. Berger, O. Lyn-gnes, H. M. Gibbs, and K. Tai, “Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime,” Phys. Rev. Lett. 77, 5257–5260 (1996).
  24. D. Hägele, M. Oestreich, W. W. Rühle, J. Hoffmann, S. Wachter, H. Kalt, K. Ohkawa, and D. Hommel, “Relation between spin and momentum relaxation in ZnSe/ZnMgSSe quantum wells,” Physica B 272, 338–340 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited