OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2052–2059

Photonic-crystal slow-light enhancement of nonlinear phase sensitivity

Marin Soljačić, Steven G. Johnson, Shanhui Fan, Mihai Ibanescu, Erich Ippen, and J. D. Joannopoulos  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2052-2059 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (420 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate how slow group velocities of light, which are readily achievable in photonic-crystal systems, can dramatically increase the induced phase shifts caused by small changes in the index of refraction. Such increased phase sensitivity may be used to decrease the sizes of many devices, including switches, routers, all-optical logical gates, wavelength converters, and others. At the same time a low group velocity greatly decreases the power requirements needed to operate these devices. We show how these advantages can be used to design switches smaller than 20 µm×200 µm in size by using readily available materials and at modest levels of power. With this approach, one could have 105 such devices on a surface that is 2 cm×2 cm, making it an important step towards large-scale all-optical integration.

© 2002 Optical Society of America

Marin Soljačić, Steven G. Johnson, Shanhui Fan, Mihai Ibanescu, Erich Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Martin, “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett. 26, 562–564 (1975). [CrossRef]
  2. K. Kawano, S. Sekine, H. Takeuchi, M. Wada, M. Kohtoku, N. Yoshimoto, T. Ito, M. Yanagibashi, S. Kondo, and Y. Noguchi, “4×4 InGaAlAs/InAlAs MQW directional coupler waveguide switch modules integrated with spot-size converters and their 10-Gbit/s operation,” Electron. Lett. 31, 96–97 (1995). [CrossRef]
  3. A. Sneh, J. E. Zucker, and B. I. Miller, “Compact, low-cross-talk, and low-propagation-loss quantum-well Y-branch switches,” IEEE Photonics Technol. Lett. 8, 1644–1646 (1996). [CrossRef]
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999). [CrossRef]
  6. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).
  7. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature (London) 413, 273–276 (2001). [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  9. J. Sajeev, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  10. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 235902(1–4) (2001). [CrossRef]
  12. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  13. S. Mookherjea and A. Yariv, “Second-harmonic generation with pulses in a coupled-resonator optical waveguide,” Phys. Rev. E 65, 026607(1–8) (2002). [CrossRef]
  14. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002). [CrossRef]
  15. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef] [PubMed]
  16. See, for example, N. W. Ashcroft and N. D. Mermin, Solid-State Physics (Saunders, Philadelphia, Pa., 1976).
  17. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parameterization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  18. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane-wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  19. For a review, see A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Norwood, Mass., 1995).
  20. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  21. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  22. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 960–963 (1998).
  23. In accord with the frequency-domain prediction, the active region therefore needs to be approximately 16 coupled cavities long if δn/nH=0.002; we find that we actually need δn/nH=0.00166 in the time-domain calculation. We attribute most of the discrepancy to the inadequacy of the tight-binding approximation, the finite bandwidth of the beam, and the numerical inaccuracies of the simulations.
  24. One might wonder about the practicality of applying a large positive field in one arm and a large negative field in the other arm of such a tiny device. All that is required, however, is to establish a strong gradient of the field between the two arms.
  25. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  26. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000). [CrossRef]
  27. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 0753131(1–8) (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited