OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2066–2074

Self-induced transparency and giant nonlinearity in doped photonic crystals

Gershon Kurizki, David Petrosyan, Tomas Opatrny, Miriam Blaauboer, and Boris Malomed  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2066-2074 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystals doped with resonant atoms allow for uniquely advantageous nonlinear modes of optical propagation. The first type of mode is self-induced transparency (SIT) solitons and multidimensional localized “bullets” propagating at photonic-bandgap frequencies. Such modes can exist even at ultraweak intensities (few photons) and therefore differ substantially either from solitons in Kerr-nonlinear photonic crystals or from SIT solitons in uniform media. The second type of mode is cross coupling between pulses exhibiting electromagnetically induced transparency and SIT gap solitons. We show that extremely strong correlations (giant cross-phase modulation) can be formed between the two pulses. These features may find applications in high-fidelity classical and quantum optical communications.

© 2002 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(270.1670) Quantum optics : Coherent optical effects

Gershon Kurizki, David Petrosyan, Tomas Opatrny, Miriam Blaauboer, and Boris Malomed, "Self-induced transparency and giant nonlinearity in doped photonic crystals," J. Opt. Soc. Am. B 19, 2066-2074 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See the Photonic Band-Gap Bibliography, J. Dowling, H. Everitt, and E. Yablonovitch, eds., at http://home.earthlink.net/ ˜jpdowling/pbgbib.html.
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  4. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  5. P. Villeneuve, S. Fan, and J. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996). [CrossRef]
  6. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  7. A. Kofman, G. Kurizki, and B. Sherman, “Spontaneous and induced atomic decay in photonic band structures,” J. Mod. Opt. 41, 353–384 (1994). [CrossRef]
  8. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991). [CrossRef]
  9. P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay, “Fundamental quantum optics in structured reservoirs,” Rep. Prog. Phys. 63, 455–503 (2000). [CrossRef]
  10. Z. Cheng and G. Kurizki, “Optical ‘multiexcitons’: quantum gap solitons in nonlinear Bragg reflectors,” Phys. Rev. Lett. 75, 3430–3433 (1995). [CrossRef] [PubMed]
  11. M. Scalora, J. Dowling, C. Bowden, and M. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  12. M. Scalora, J. P. Dowling, C. M. Bowden, and M. Bloemer, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994). [CrossRef]
  13. G. Kurizki, A. Kozhekin, T. Opatrny, and B. Malomed, “Optical solitons in periodic media with resonant and off-resonant nonlinearities,” in Progress in Optics E. Wolf, ed. (Elsevier, North-Holland, 2001), Vol. 42, pp. 93–146.
  14. A. Kozhekin and G. Kurizki, “Self-induced transparency in Bragg reflectors: gap solitons near absorption resonances,” Phys. Rev. Lett. 74, 5020–5023 (1995). [CrossRef] [PubMed]
  15. A. Kozhekin and G. Kurizki, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998). [CrossRef]
  16. T. Opatrný, B. Malomed, and G. Kurizki, “Dark and bright solitons in resonantly absorbing gratings,” Phys. Rev. E 60, 6137–6149 (1999). [CrossRef]
  17. M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors,” Phys. Rev. E 62, R57–R59 (2000). [CrossRef]
  18. D. Christodoulides and R. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef] [PubMed]
  19. A. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–40 (1989). [CrossRef]
  20. J. Feng and F. Kneubuhl, “Solitons in a periodic structure with Kerr nonlinearity,” IEEE J. Quantum Electron. 29, 590 (1993). [CrossRef]
  21. C. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics E. Wolf, ed. (Elsevier, North-Holland, 1997), Vol. 33, Chap. 3, pp. 205–259.
  22. B. Eggleton, R. Slusher, C. de Sterke, P. Krug, and J. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  23. S. McCall and E. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18, 908–911 (1967). [CrossRef]
  24. S. McCall and E. Hahn, “Self-induced transparency,” Phys. Rev. 183, 457–485 (1969). [CrossRef]
  25. N. Aközbek and S. John, “Self-induced transparency solitary waves in a doped nonlinear photonic band gap material,” Phys. Rev. E 58, 3876–3895 (1998). [CrossRef]
  26. B. Mantsyzov, “Gap 2π pulse with an inhomogeneously broadened line and an oscillating solitary wave,” Phys. Rev. A 51, 4939–4943 (1995). [CrossRef] [PubMed]
  27. A. Newell and J. Moloney, Nonlinear Optics (Addison-Wesley, Reading, Mass., 1992).
  28. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15, 1282–1284 (1990). [CrossRef] [PubMed]
  29. M. Blaauboer, G. Kurizki, and B. A. Malomed, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84, 1906–1909 (2000). [CrossRef] [PubMed]
  30. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982). [CrossRef] [PubMed]
  31. S. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  32. M. Scully and M. Zubairy, in Quantum Optics (Cambridge University, Cambridge, 1997), Chap. 7.
  33. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef] [PubMed]
  34. S. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  35. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  36. H. G. Winful and V. Perlin, “Raman gap solitons,” Phys. Rev. Lett. 84, 3586–3589 (2000). [CrossRef] [PubMed]
  37. C. Greiner, B. Boggs, T. Loftus, T. Wang, and T. Mossberg, “Polarization-dependent Rabi frequency beats in the coherent response of Tm3+ in YAG,” Phys. Rev. A 60, R2657–R2660 (1999). [CrossRef]
  38. G. Khitrova, H. Gibbs, F. Jahnke, M. Kira, and S. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1640 (1999). [CrossRef]
  39. M. Lukin and A. Imamoǧlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000). [CrossRef] [PubMed]
  40. H. Kimble, “Strong interaction of single atoms and photons in cavity QED,” Phys. Scr. 76, 127–137 (1998). [CrossRef]
  41. A. Imamoǧlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited