OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2122–2128

Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide

Andrea Marco Malvezzi, Francesco Cattaneo, Gabriele Vecchi, Matteo Falasconi, Giorgio Guizzetti, Lucio Claudio Andreani, Filippo Romanato, Luca Businaro, Enzo Di Fabrizio, Adriana Passaseo, and Massimo De Vittorio  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2122-2128 (2002)

View Full Text Article

Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear reflection and diffraction measurements have been performed on a GaAs/AlGaAs photonic-crystal waveguide patterned with a square lattice: The basis in the two-dimensional unit cell consists of rings of air in the dielectric matrix. The measured angles of diffracted second-harmonic beams agree with those predicted for nonlinear diffraction conditions. Results for second-harmonic intensities as a function of incidence angle, polarization, and pump wavelength show that the reflected second-harmonic signal is dominated by the crystalline symmetry of GaAs, whereas nonlinear diffraction is determined by the photonic-crystal structure.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

Andrea Marco Malvezzi, Francesco Cattaneo, Gabriele Vecchi, Matteo Falasconi, Giorgio Guizzetti, Lucio Claudio Andreani, Filippo Romanato, Luca Businaro, Enzo Di Fabrizio, Adriana Passaseo, and Massimo De Vittorio, "Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide," J. Opt. Soc. Am. B 19, 2122-2128 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
  2. R. Reinisch and M. Nevière, “Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects,” Phys. Rev. B 28, 1870–1885 (1983).
  3. J. L. Coutaz, M. Nevière, E. Pic, and R. Reinisch, “Experi-mental study of surface-enhanced second-harmonic generation on silver gratings,” Phys. Rev. B 32, 2227–2232 (1985).
  4. M. Nevière, R. Reinisch, and D. Maystre, “Surface-enhanced second-harmonic generation at a silver grating: a numerical study,” Phys. Rev. B 32, 3634–3641 (1985).
  5. M. Nevière, P. Vincent, D. Maystre, R. Reinisch, and J. Coutaz, “Differential theory for metallic gratings in nonlinear optics. Second-harmonic generation,” J. Opt. Soc. Am. B 5, 330–337 (1988).
  6. H. J. Simon and Z. Chen, “Optical second-harmonic generation with grating-coupled surface plasmons from a quartz–silver–quartz grating structure,” Phys. Rev. B 39, 3077–3085 (1989).
  7. X. D. Zhu, Th. Rasing, and Y. R. Shen, “Surface diffusion of CO on Ni(111) studied by diffraction of optical second-harmonic generation off a monolayer grating,” Phys. Rev. Lett. 61, 2883–2885 (1988).
  8. G. A. Reider, M. Huemer, and A. J. Schmidt, “Surface second harmonic generation spectroscopy without interference of substrate contributions,” Opt. Commun. 68, 149–152 (1988).
  9. T. Suzuki and T. F. Heinz, “Surface-harmonic diffraction from a monolayer grating,” Opt. Lett. 14, 1201–1203 (1989).
  10. R. W. J. Hollering, Q. H. F. Vrehen, and G. Marowsky, “Angular dependence of optical second-harmonic generation from a monolayer grating,” Opt. Commun. 78, 387–392 (1990).
  11. G. A. Reider, U. Höfer, and T. F. Heinz, “Surface diffusion of hydrogen on Si(111)7×7,” Phys. Rev. Lett. 66, 1994–1997 (1991).
  12. X. Xiao, X. D. Zhu, W. Daum, and Y. R. Shen, “Optical second-harmonic diffraction study of anisotropic surface diffusion: CO on Ni(110),” Phys. Rev. B 46, 9732–9743 (1992).
  13. A. C. R. Pipino, G. R. Schatz, and R. P. Van Duyne, “Surface-enhanced second-harmonic diffraction: selective enhancement by spatial harmonics,” Phys. Rev. B 49, 8320–8330 (1994).
  14. A. C. R. Pipino, R. P. Van Duyne, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: experimental investigation of selective enhancement,” Phys. Rev. B 53, 4162–4169 (1996).
  15. M. Nevière, E. Popov, and R. Reinisch, “Electromagnetic resonances in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A 12, 513–523 (1995).
  16. E. Popov, M. Nevière, G. Blau, and R. Reinisch, “Numerical optimization of grating-enhanced second-harmonic genera-tion in optical waveguides,” J. Opt. Soc. Am. B 12, 2390–2397 (1995).
  17. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
  18. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
  19. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
  20. For recent reviews see, e.g., C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century, Vol. 563 of NATO Science Series C: Mathematical and Physical Sciences (Kluwer, Dordrecht, The Netherlands, 2001).
  21. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
  22. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdré, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999).
  23. M. Galli, M. Agio, L. C. Andreani, L. Atzeni, D. Bajoni, G. Guizzeti, L. Businaro, E. D. Fabrizio, F. Romanato, and A. Passaseo, “Optical properties and photonic bands of GaAs photonic crystal waveguides with a tilted square lattice,” Eur. Phys. J. B 27, 79–87 (2002).
  24. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
  25. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
  26. J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474–476 (1963).
  27. R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited