OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2129–2140

Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals

Tatyana V. Dolgova, Anton I. Maidykovski, Michail G. Martemyanov, Andrey A. Fedyanin, Oleg A. Aktsipetrov, Gerd Marowsky, Vladimir A. Yakovlev, Giorgio Mattei, Narumi Ohta, and Seiichiro Nakabayashi  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2129-2140 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (672 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical properties of one-dimensional all-solid-state photonic-crystal microcavities (MCs) are experimentally studied by second-harmonic generation (SHG) spectroscopy in both the frequency and the wave-vector domains. The studied single and coupled MCs are formed by the alternating of mesoporous silicon layers of different porosities. When the fundamental radiation is in resonance with the MC mode the second-harmonic intensity is enhanced by a factor of approximately 102. The resonant SHG response is compared with the off-resonance response, as the fundamental wavelength is outside the photonic bandgap. The splitting of the modes of two identical coupled MCs is observed in the wave-vector domain spectrum of enhanced SHG. The SHG enhancement is attributed to the combined effects of the spatial localization of the fundamental field in the MC spacer and the fulfillment of the phase-matching conditions. The confinement of the resonant fundamental field is probed directly at the MC cleavage by a scanning near-field optical microscope. The role of the phase matching that is associated with the giant effective dispersion in the spectral vicinity of the MC mode is deduced from a comparison with the SHG peaks at both edges of the photonic bandgap.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4170) Optical devices : Multilayers

Tatyana V. Dolgova, Anton I. Maidykovski, Michail G. Martemyanov, Andrey A. Fedyanin, Oleg A. Aktsipetrov, Gerd Marowsky, Vladimir A. Yakovlev, Giorgio Mattei, Narumi Ohta, and Seiichiro Nakabayashi, "Giant optical second-harmonic generation in single and coupled microcavities formed from one-dimensional photonic crystals," J. Opt. Soc. Am. B 19, 2129-2140 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Imhof, W. Vos, R. Sprik, and A. Lagendijk, “Large dispersive effects near the band edges of photonic crystals,” Phys. Rev. Lett. 83, 2942–2945 (1999). [CrossRef]
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Managan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000). [CrossRef]
  5. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101(R)–161104(R) (2001). [CrossRef]
  6. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef] [PubMed]
  7. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  9. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  10. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996). [CrossRef]
  11. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  12. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000). [CrossRef] [PubMed]
  13. N. Bloembergen and J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–486 (1970). [CrossRef]
  14. J. P. van der Ziel and M. Ilegems, “Optical second harmonic generation in periodic multilayer GaAs–Al0.3Ga0.7As structures,” Appl. Phys. Lett. 28, 437–439 (1976). [CrossRef]
  15. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78, 3021–3023 (2001). [CrossRef]
  16. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999). [CrossRef]
  17. L. A. Golovan, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-siliconbased structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999) [Pis'ma Zh. Eksp. Teor. Fiz. 69, 274–279 (1999)]. [CrossRef]
  18. T. V. Dolgova, A. I. Maidikovsky, M. G. Martemyanov, G. Marowsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001) [Pis'ma Zh. Eksp. Teor. Fiz. 73, 8–12 (2001)]. [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 77.
  20. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994). [CrossRef]
  21. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]
  22. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E 64, 016609–016609–9 (2001). [CrossRef]
  23. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989). [CrossRef]
  24. M. J. Steel and C. Martijn de Sterke, “Second-harmonic generation in second-harmonic fiber Bragg gratings,” Appl. Opt. 35, 3211–3222 (1996). [CrossRef] [PubMed]
  25. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, “Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions,” Phys. Rev. E 63, 046609–0466011 (2001). [CrossRef]
  26. J. Trull, R. Vilaseca, J. Martorell, and R. Corbalan, “Second-harmonic generation in local modes of a truncated periodic structure,” Opt. Lett. 20, 1746–1748 (1995). [CrossRef] [PubMed]
  27. H. Cao, D. B. Hall, J. M. Torkelson, and C.-Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76, 538–540 (2001). [CrossRef]
  28. V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74, 1945–1947 (1999). [CrossRef]
  29. T. V. Dolgova, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, K. Nishimura, and M. Inoue, “Magnetization-induced second-harmonic generation and NOMOKE in magneto-photonic crystals and microcavities,” in Quantum Electronics and Laser Science, Vol. 94 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), p. 15.
  30. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  31. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17, 387–400 (2000). [CrossRef]
  32. S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66, 2159–2161 (1995). [CrossRef]
  33. C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidakovic, D. J. Lovering, and J. A. Levenson, “Second-harmonic generation in a doubly resonant semiconductor microcavity,” Opt. Lett. 22, 1775–1777 (1997). [CrossRef]
  34. C. Mazzoleni and L. Pavesi, “Application to optical components of dielectric porous silicon multilayers,” Appl. Phys. Lett. 67, 2983–2985 (1995). [CrossRef]
  35. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000). [CrossRef]
  36. V. Pellegrini, A. Tredicucci, C. Mazzoleni, and L. Pavesi, “Enhanced optical properties in porous silicon microcavities,” Phys. Rev. B 52, R14328–R14331 (1995). [CrossRef]
  37. L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998). [CrossRef]
  38. L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999). [CrossRef]
  39. T. V. Dolgova, A. I. Maidikovsky, M. G. Martemyanov, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant third-harmonic generation in photonic crystals and microcavities based on porous silicon,” JETP Lett. 75, 15–19 (2002) [Pis’ma Zh. Eksp. Teor. Fiz. 75, 17–27 (2002)]. [CrossRef]
  40. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997). [CrossRef]
  41. O. A. Aktsipetrov, A. V. Melnikov, Yu. N. Moiseev, T. V. Murzina, C. W. van Hasselt, Th. Rasing, and G. Rikken, “Second harmonic generation and atomic-force microscopy studies of porous silicon,” Appl. Phys. Lett. 67, 1191–1193 (1995). [CrossRef]
  42. M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001). [CrossRef]
  43. M. Cardona, “Modulation spectroscopy,” in Solid State Physics, F. Seitz, D. Turnbull, and H. Ehrenreich, eds. (Academic, New York, 1969), Suppl. 11, Chap. 2.
  44. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  45. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited