OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2165–2170

Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses

Alexander Apolonski, Boris Povazay, Angelika Unterhuber, Wolfgang Drexler, William J. Wadsworth, Jonathan C. Knight, and Phillip St. J. Russell  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2165-2170 (2002)

View Full Text Article

Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiple approaches to generate a smooth, powerful, and stable supercontinuum in cobweb photonic-crystal fibers were undertaken by use of 18-fs pulses. These approaches include utilization of incident pulses with various chirp, power, and polarization states, as well as fibers with different lengths and core sizes. For long fibers (tens of centimeters) the supercontinuum contains a finely modulated structure that can be smoothed when the oscillator is in a regime of relaxation oscillations. Short fibers provide a supercontinuum free of gaps. By optimization of these parameters supercontinua exceeding one octave with modulations of less than 10 dB have been generated.

© 2002 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(320.7140) Ultrafast optics : Ultrafast processes in fibers

Alexander Apolonski, Boris Povazay, Angelika Unterhuber, Wolfgang Drexler, William J. Wadsworth, Jonathan C. Knight, and Phillip St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Rhanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
  2. B. Povazay, A. Apolonski, A. Unterhuber, B. Hermann, K. K. Bizheva, H. Sattmann, P. St. J. Russell, F. Krausz, A. F. Fercher, and W. Drexler, “Visible light optical coherence tomography” (to be published), Proc. SPIE paper 4619–17.
  3. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
  4. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipoecs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
  5. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Haensch, and F. Krausz, “Experimental access to the absolute phase of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
  7. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kaertner, J. F. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86, 5462–5465 (2001).
  8. F. W. Helbing, G. Steinmeyer, R. S. Windeler, J. Stenger, H. R. Telle, and U. Keller, “Carrier-envelope offset dynamics of mode-locked lasers,” Opt. Lett. 27, 194–196 (2002).
  9. T. M. Fortier, J. Ye, and S. T. Cundiff, “Nonlinear phase noise generated in air–silica microstructure fibers and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  11. L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), Vol. 43, pp. 304–306.
  12. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901–203903 (2001).
  13. A. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  15. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bolten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
  16. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic-crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
  17. M. Oberthaler and R. A. Hoepfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
  18. P. A. Champert, S. V. Popov, and J. R. Taylor, “Generation of multiwatt, broadband continua in holey fibers,” Opt. Lett. 27, 122–124 (2002).
  19. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersionin photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
  20. Q. Xing, W. Zhang, and K. M. Yoo, “Self-Q-switched self-mode-locked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995).
  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  22. St. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic-crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
  23. N. Nishizawa, M. Yoshida, and T. Goto, “Generation and characterization of 1.1–1.2 μm widely broadened supercontinuum in highly nonlinear dispersion shifted fibers,” in Conference on Lasers and Electro-Optics 2001 (CLEO/Pacific Rim) (Optical Society of America, Washington, D.C., 2001), paper THJ2–4.
  24. N. Karasawa, Sh. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, “Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber,” IEEE J. Quantum Electron. 37, 398–404 (2001).
  25. A. Apolonski, Institute of Photonics, Vienna University of Technology, Vienna, Austria (personal communication, November 10, 2001). In this case a high-power Ti:sapphire oscillator (see Ref. 5) was used with similar focusing conditions for fibers.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited