OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2171–2182

Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers

Anton V. Husakou and Joachim Herrmann  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2171-2182 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear propagation of femtosecond pulses in photonic-crystal fibers is investigated theoretically without the use of the slowly varying envelope approximation. Low-intensity supercontinuum generation caused by fission of higher-order solitons into red-shifted fundamental solitons and blue-shifted nonsolitonic radiation is studied in a large range of fiber and pulse parameters. It is shown that phase matching of degenerate four-wave mixing can be achieved in an extremely broad frequency range from the IR to the UV. Spontaneous generation of new frequency components and parametric amplification by four-wave mixing as well as its possible overlap with soliton fission are studied in detail.

© 2002 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

Anton V. Husakou and Joachim Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic-crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russel, “Endlessly single-mode photonic-crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russel, “Group-velocity dispersion in photonic-crystal fibers,” Opt. Lett. 23, 1662–1664 (1998). [CrossRef]
  4. J. C. Knight, J. Arriaga, and T. A. Birks, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Steinz, “Visible supercontinuum generation in an air–silica microstructure optical fiber with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  6. T. A. Birks, W. J. Wadsworth, and P. St. J. Russel, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  7. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to 6 fs by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987). [CrossRef] [PubMed]
  8. M. Pshenichnikov, W. de Boeij, and D. Wiersma, “Generation of 13-fs, 5-MW pulses from a cavity-dumped Ti:sapphire laser,” Opt. Lett. 19, 572–574 (1994). [CrossRef] [PubMed]
  9. V. P. Kalosha and J. Herrmann, “Self-phase modulation and compression of few-optical-cycle pulses,” Phys. Rev. A 62, 011804(R) (2000). [CrossRef]
  10. D. A. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  11. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264 (2000). [CrossRef] [PubMed]
  12. J. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608 (2001). [CrossRef]
  13. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  14. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russel, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic crystal fibers,” Phys. Rev. Lett., accepted for publication.
  15. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  16. V. P. Kalosha and J. Herrmann, “Formation of optical subcycle pulses and full Maxwell–Bloch solitary waves by coherent propagation effects,” Phys. Rev. Lett. 83, 544–547 (1999). [CrossRef]
  17. R. K. Bulough, P. M. Jack, P. W. Kitchenside, and R. Saunders, “Solitons in laser physics,” Phys. Scr. 20, 364–381 (1979). [CrossRef]
  18. T. Brabec and F. Krausz, “Nonlinear pulse propagation in the single-pulse regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  19. J. E. Rothenberg, “Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17, 1340–1342 (1992). [CrossRef]
  20. A. V. Husakou, V. P. Kalosha, and J. Herrmann, “Supercontinuum generation and subcycle pulse compression in hollow waveguides,” Opt. Lett. 26, 1022–1024 (2001). [CrossRef]
  21. V. P. Kalosha and J. Herrmann, “Phase relation, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000). [CrossRef] [PubMed]
  22. V. P. Kalosha and J. Herrmann, “Pulse compression without chirp control and frequency detuning by high-order coherent Raman scattering in impulsively excited media,” Opt. Lett. 26, 456–458 (2001). [CrossRef]
  23. M. Geissler, G. Tempea, A. Scrinzi, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999). [CrossRef]
  24. M. S. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of bound electronic nonlinear refractive index,” IEEE J. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  25. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystal and glasses,” Phys. Rev. Lett. 24, 592–594 (1970). [CrossRef]
  26. R. Alfano, ed., The Supercontinuum Laser Source (Springer Verlag, New York, 1989).
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 1994).
  28. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987). [CrossRef]
  29. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987). [CrossRef] [PubMed]
  30. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1955). [CrossRef]
  31. J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third-order dispersion,” Opt. Commun. 114, 321–328 (1995). [CrossRef]
  32. A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, “Raman amplification of modulational instability and solitary-wave formation,” Opt. Lett. 13, 1029–1031 (1988). [CrossRef] [PubMed]
  33. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulational instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995). [CrossRef] [PubMed]
  34. J. Zhang, Q. Li, W. Pan, S. Y. Luo, and Y. L. Chen, “Self-induced phase matching in stimulated four-wave mixing in a nonbirefringent single-mode optical fiber,” Opt. Lett. 26, 214–216 (2001). [CrossRef]
  35. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in a microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited