OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2191–2202

Gap-soliton switching in short microresonator structures

Suresh Pereira, Philip Chak, and J. E. Sipe  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 2191-2202 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002191


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We argue that it should be possible to observe gap-soliton switching in a system composed of two channel waveguides coupled by microresonators, even when the system is only 50 µm long. We differentiate between gaps that occur because of Bragg reflection and gaps that occur because of the resonance of the microresonators. The latter are characterized by anomalously small group-velocity dispersion and therefore by smaller nonlinear switching intensities.

© 2002 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Suresh Pereira, Philip Chak, and J. E. Sipe, "Gap-soliton switching in short microresonator structures," J. Opt. Soc. Am. B 19, 2191-2202 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979). [CrossRef]
  4. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1994), Vol. 33, pp. 203–260.
  5. J. E. Sipe and H. G. Winful, “Nonlinear Schrödinger solitons in a periodic structure,” Opt. Lett. 13, 132–133 (1988). [CrossRef]
  6. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996). [CrossRef]
  7. C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1989). [CrossRef]
  8. G. P. Agrawal, Non-Linear Fiber Optics (Academic, San Diego, Calif., 1989).
  9. S. Pereira and J. E. Sipe, “Light propagation through birefringent, nonlinear media with deep gratings,” Phys. Rev. E 62, 5745–5757 (2000). [CrossRef]
  10. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  11. U. Mohideen, R. E. Slusher, V. Mizrahi, T. Erdogan, M. Kuwata-Gonokami, P. J. Lemaire, J. E. Sipe, C. M. de Sterke, and N. G. R. Broderick, “Gap soliton propagation in optical fiber gratings,” Opt. Lett. 20, 1674–1676 (1995). [CrossRef] [PubMed]
  12. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  13. N. G. R. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Experimental observation of nonlinear pulse compression in nonuniform Bragg gratings,” Opt. Lett. 22, 1837–1839 (1997). [CrossRef]
  14. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  15. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–331 (1998). [CrossRef]
  16. N. G. R. Broderick, D. J. Richardson, and M. Ibsen, “Nonlinear switching in a 20-cm-long fiber Bragg grating,” Opt. Lett. 25, 536–538 (2000). [CrossRef]
  17. R. E. Slusher, S. Spälter, B. J. Eggleton, S. Pereira, and J. E. Sipe, “Bragg-grating-enhanced polarization instability,” Opt. Lett. 25, 749–751 (2000). [CrossRef]
  18. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  19. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear Schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587–599 (1999). [CrossRef]
  20. P. Millar, M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in an AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999). [CrossRef]
  21. N. G. R. Broderick, P. Millar, D. J. Richardson, J. S. Aitchison, R. De La Rue, and T. Krauss, “Spectral features associated with nonlinear pulse compression in Bragg gratings,” Opt. Lett. 25, 740–742 (2000). [CrossRef]
  22. S. Blair and K. Kagner, “(2+1)-D propagation of spatio-temporal solitary waves including higher-order corrections,” Opt. Quantum Electron. 30, 697–737 (1998). [CrossRef]
  23. N. Akozbek and S. John, “Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures,” Phys. Rev. E 57, 2287–2319 (1998). [CrossRef]
  24. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Hans, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si–SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998). [CrossRef]
  25. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344–346 (2000). [CrossRef]
  26. J. E. Heebner, R. W. Boyd, and Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator- modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002). [CrossRef]
  27. For an illustration of these oscillations and of how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998). [CrossRef]
  28. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976).
  29. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001). [CrossRef]
  30. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994). [CrossRef]
  31. C. M. de Sterke, “Propagation through apodized gratings,” Opt. Express 3, 405–410 (1998), http://www. opticsexpress.org. [CrossRef] [PubMed]
  32. Normalizations of fields that correspond to gmk̄(z, t) abound in the literature, and care must be taken in comparing both the equations and the effective coefficients that appear in various papers.
  33. S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, “Gap solitons in a two-channel microresonator structure,” Opt. Lett. 27, 536–538 (2002). [CrossRef]
  34. C. M. de Sterke and J. E. Sipe, “Self-localized light: launching of low-velocity solitons in corrugated nonlinear waveguides,” Opt. Lett. 14, 871–873 (1989). [CrossRef] [PubMed]
  35. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs microring resonators,” Opt. Lett. 25, 554–556 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited