OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2203–2207

Unstable excited and stable oscillating gap 2π pulses

B. I. Mantsyzov and R. A. Silnikov  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2203-2207 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamics of the gap 2π pulse dynamics in one-dimensional resonantly absorbing Bragg gratings are studied. A new family of stable oscillating and excited unstable gap 2π pulses is analytically and numerically described by a transition from the two-wave Maxwell–Bloch equation to the modified sine-Gordon equation and by direct integration of the two-wave Maxwell–Bloch equation.

© 2002 Optical Society of America

OCIS Codes
(270.5530) Quantum optics : Pulse propagation and temporal solitons

B. I. Mantsyzov and R. A. Silnikov, "Unstable excited and stable oscillating gap 2π pulses," J. Opt. Soc. Am. B 19, 2203-2207 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Bowden, M. Bertolotti, and C. Sibilia, eds., Linear and Nonlinear Nanoscale Optics (American Institute of Physics, New York, 2001).
  2. B. I. Mantsyzov and R. N. Kuzmin, “Coherent interaction of light with a discrete periodic resonant medium,” Sov. Phys. JETP 64, 37–44 (1986).
  3. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  4. C. Conti, S. Trillo, and G. Assanto, “Doubly resonant Bragg simultons via second-harmonic generation,” Phys. Rev. Lett. 78, 2341–2344 (1997). [CrossRef]
  5. A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998). [CrossRef]
  6. C. Conti, G. Assanto, and S. Trillo, “Self-sustained trapping mechanism of zero-velocity parametric gap-solitons,” Phys. Rev. E 59, 2467–2470 (1999). [CrossRef]
  7. B. I. Mantsyzov, “Gap 2π-pulse with an inhomogeneously broadened line and an oscillating solitary wave,” Phys. Rev. A 51, 4939–4943 (1995). [CrossRef] [PubMed]
  8. F. De Rossi, C. Conti, and S. Trillo, “Stability, multistability, and wobbling of optical gap solitons,” Phys. Rev. Lett. 81, 85–88 (1998). [CrossRef]
  9. J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Exciton–polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structure,” Phys. Rev. B 61, 13 863–13 872 (2000). [CrossRef]
  10. A. Schulzgen, R. Binder, M. E. Donovan, M. Lindberg, K. Wundke, H. M. Gibbs, G. Khitrova, and N. Peyghambarian, “Direct observation of excitonic Rabi oscillations in semiconductors,” Phys. Rev. Lett. 82, 2346–2349 (1999). [CrossRef]
  11. M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. Krumhansl, “Dynamics of sine-Gordon solitons in the presence of perturbations,” Phys. Rev. B 15, 1578–1592 (1977). [CrossRef]
  12. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1964), Chap. 16.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited