OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2215–2223

Semiclassical theory of lasing in photonic crystals

Lucia Florescu, Kurt Busch, and Sajeev John  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2215-2223 (2002)

View Full Text Article

Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical analysis of laser action within the bands of propagating modes of a photonic crystal. Using Bloch functions as carrier waves in conjunction with a multiscale analysis, we derive the generalized Maxwell–Bloch equations for an incoherently pumped atomic system in interaction with the electromagnetic reservoir of a photonic crystal. These general Maxwell–Bloch equations are similar to the conventional semiclassical laser equations but contain effective parameters that depend on the band structure of the linear photonic crystal. Through an investigation of steady-state laser behavior, we show that, near a photonic band edge, the rate of stimulated emission may be enhanced and the internal losses are reduced, which leads to an important lowering of the laser threshold. In addition, we find an increase of the laser output along with an additional narrowing of the linewidth at a photonic band edge.

© 2002 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(160.3380) Materials : Laser materials

Lucia Florescu, Kurt Busch, and Sajeev John, "Semiclassical theory of lasing in photonic crystals," J. Opt. Soc. Am. B 19, 2215-2223 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. M. Soukoulis, ed., Photonic Band Gap Materials, NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1996) Vol. 315.
  2. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century, NATO ASI Series C (Kluwer, Dordrecht, The Netherlands, 2001), Vol. 563.
  3. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  6. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
  7. H. Yokoyama and S. D. Brorson, “Rate equation analysis of microcavity lasers,” J. Appl. Phys. 86, 4801–4805 (1989).
  8. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991).
  9. S. John and T. Quang, “Collective switching and inversion without fluctuation of two-level atoms in confined photonic systems,” Phys. Rev. Lett. 78, 1888–1891 (1997).
  10. M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801–1–033801–21 (2001).
  11. S. John and M. Florescu, “Photonic band gap materials: toward an all-optical micro-transistor,” J. Opt. A, Pure Appl. Opt. 3, S103–S120 (2001).
  12. N. Vats and S. John, “Non-Markovian quantum fluctuations and superradiance near a photonic band edge,” Phys. Rev. A 58, 4168–4184 (1998).
  13. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
  14. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B 64, 125122–1–125122–6 (2001).
  15. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999).
  16. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
  17. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, Y.-H. Lee, and D.-H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982–2984 (2000).
  18. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, “Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding,” J. Appl. Phys. 86, 3502–3507 (1999).
  19. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77, 2310–2312 (2000).
  20. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
  21. S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys. Lett. 37, L565–L567 (1998).
  22. K. Sakoda, K. Ohtaka, and T. Ueta, “Low-threshold laser oscillation due to group-velocity anomaly pelicular to two- and three-dimensional photonic crystals,” Opt. Express 4, 481–489 (1999), http://epubs.osa.org/opticsexpress.
  23. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic-crystal lasers,” J. Appl. Phys. 89, 815–823 (2001).
  24. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  25. A. Nayfeh, Perturbation Methods (Wiley, New York, 1973).
  26. C. M. de Sterke and J. E. Sipe, “Envelope-function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1988).
  27. J. E. Sipe, “Vector k⋅p approach for photonic band structures,” Phys. Rev. E 62, 5672–5677 (2000).
  28. D. Hermann, M. Frank, K. Busch, and P. Wölfle, “Photonic band structure computation,” Opt. Express 8, 167–172 (2001), http://epubs.osa.org/opticsexpress.
  29. M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited