## Waveguides in finite-height two-dimensional photonic crystals

JOSA B, Vol. 19, Issue 9, pp. 2232-2240 (2002)

http://dx.doi.org/10.1364/JOSAB.19.002232

Acrobat PDF (570 KB)

### Abstract

We present a three-dimensional (3-D) finite-difference time-domain (FDTD) analysis of the transmission and the waveguiding properties of dielectric structures of finite height. A two-dimensional (2-D) photonic-crystal geometry is used for lateral confinement, and traditional waveguiding by dielectric mismatch is used for vertical confinement. We investigate different types of waveguide in photonic crystals with a finite height. We examine the dependence of the guiding properties on the lengths of the holes that constitute the photonic crystal and the widths of the layers of the waveguide. The role of the filling ratio of the holes and the dielectric constants of the upper and the lower layers for the guiding properties is presented. Also, a comparison between the 3-D and the 2-D FDTD results is given.

© 2002 Optical Society of America

**OCIS Codes**

(130.2790) Integrated optics : Guided waves

(160.3130) Materials : Integrated optics materials

(230.7370) Optical devices : Waveguides

(250.5300) Optoelectronics : Photonic integrated circuits

**Citation**

M. Kafesaki, M. Agio, and C. M. Soukoulis, "Waveguides in finite-height two-dimensional photonic crystals," J. Opt. Soc. Am. B **19**, 2232-2240 (2002)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2232

Sort: Year | Journal | Reset

### References

- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals—Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).
- C. M. Soukoulis, ed., Photonic Band Gap Materials, Vol. 315 of NATO Advanced Scientific Institutes Series E, Applied Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1996).
- Special section on Electromagnetic Crystal Structures, Design, Synthesis, and Applications, A. Scherer, T. Doll, E. Yablonovitch, E. O. Everitt, and J. A. Higgins, eds., J. Lightwave Technol. 17(11), (1999).
- C. M. Soukoulis, Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, Dordrecht, The Netherlands, 2001).
- A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
- S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
- M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, and D. D. Cronch, “Waveguides in photonic band gap materials,” paper presented at the Fourteenth Annual Review on Progress and Applications in Computational Electrodynamics, Monterey, Calif., 1998.
- M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999).
- A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3739–3741 (1999).
- A. Chutinan and S. Noda, “Design for waveguides in three-dimensional photonic crystals,” Jpn. J. Appl. Phys., Part 1 39, 2353–2356 (2000).
- M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B 63, R-081107 (2001).
- I. El-Kady, M. M. Sigalas, R. Biswas, and K. M. Ho, “Dielectric waveguides in two-dimensional photonic bandgap materials,” J. Lightwave Technol. 17, 2042–2049 (1999).
- A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
- S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
- S. Lin and J. G. Fleming, “A three-dimensional optical photonic crystal,” J. Lightwave Technol. 17, 1944–1947 (1999).
- K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
- T. F. Krauss, R. M. de la Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 649 (1996).
- D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdre, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997).
- H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De la Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999), and references therein.
- T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
- M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
- M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
- E. Chow, S. Y. Lin, S. G. Johnson, P. B. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
- S. Y. Lin, E. Chow, and S. G. Johnson, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
- E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelength,” Opt. Lett. 26, 286–288 (2001).
- S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
- T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107 (2001).
- T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
- L. C. Andreani and M. Agio, “Photonic bands and gap maps in a photonic crystal slab,” IEEE J. Quantum Electron. (to be published).
- H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
- A. Taflove, Computational Electrodynamics, The Finite Difference Time Domain Method (Artech House, Boston, Mass., 1995).
- Liao boundary conditions are based on extrapolation of the fields in space and time by use of a Newton backward-difference polynomial. They are introduced in Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin., Ser. A 27, 1063–1076 (1984). Liao boundary conditions are also described in detail in Ref. 31.
- B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998).
- O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
- A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58, 4809–4817 (1998).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.