OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2282–2291

Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients

Joseph W. Haus, Boon Y. Soon, Michael Scalora, Cocita Sibilia, and Igor V. Mel'nikov  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 2282-2291 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002282


View Full Text Article

Acrobat PDF (841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the multiple-scales formalism to derive a complete set of equations for a finite medium with periodic linear and nonlinear Kerr optical coefficients. The equations for a single-frequency field reveal three new, nonlinear terms that are related to the difference in the Kerr nonlinearity in two-component media. The nonlinear evolution of coupled forward and backward fields in a multilayered film is numerically simulated by a spectral method. We examine the linear stability of the steady-state solution for an infinite medium and extend previous discussions of modulational instabilities to the new set of equations. We find that the inhomogeneous coefficient can selectively suppress modulational instability in the longitudinal or transverse direction.

© 2002 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

Citation
Joseph W. Haus, Boon Y. Soon, Michael Scalora, Cocita Sibilia, and Igor V. Mel'nikov, "Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients," J. Opt. Soc. Am. B 19, 2282-2291 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2282


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. D. Tocci, M. J. Bloemer, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt, “Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss,” Phys. Rev. E 54, R1078–R1081 (1996).
  2. A. V. Andreev, A. V. Balakin, I. A. Ozheredov, A. P. Shkurinov, P. Maselin, G. Mouret, and D. Boucher, “Compression of femtosecond laser pulses in thin one-dimensional photonic crystals,” Phys. Rev. E 63, 016602 (2001).
  3. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Maselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999).
  4. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
  5. L. Brzozowski and E. H. Sargent, “Nonlinear distributed-feedback structures as passive optical limiters,” J. Opt. Soc. Am. B 17, 1360–1365 (2000).
  6. D. E. Pelinovsky, L. Brzozowski, and E. H. Sargent, “Transmission regimes of periodic nonlinear optical structures,” Phys. Rev. E 62, R4536–R4539 (2000).
  7. M. Scalora, J. P. Dowling, M. J. Bloemer, and C. M. Bowden, “The photonic band edge optical diode,” J. Appl. Phys. 76, 2023–2026 (1994).
  8. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, “Distributed feedback pulse generator based on a nonlinear fiber grating,” Electron. Lett. 32, 2341–2342 (1996).
  9. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
  10. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E 64, 16609 (2001).
  11. A. V. Tarasishin, S. A. Magnitskii, and A. M. Zheltikov, “Matching phase and group velocities in second-harmonic generation in finite one-dimensional photonic band-gap structures,” Laser Phys. 11, 31–8 (2001).
  12. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, and A. P. Shkurinov, “Enhancement of sum frequency generation near the photonic band gap edge under quasiphase matching conditions,” Phys. Rev. E 63, 046609 (2001).
  13. D. Pezzetta, C. Sibilia, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Photonic bandgap structures in planar nonlinear waveguides: application to second-harmonic generation,” J. Opt. Soc. Am. B 18, 1326–1333 (2001).
  14. M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Efficient nonlinear infrared parametric generation on one-dimensional photonic band gap structures,” Opt. Commun. 189, 135–142 (2001).
  15. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
  16. C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
  17. S. Dutta-Gupta, “Nonlinear optics of stratified media,” Prog. Opt. 38, 1–84 (1998).
  18. G. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
  19. D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27, 227–313 (1989).
  20. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  21. A. G. Kalocsai and J. W. Haus, “Asymptotic wave-wave processes beyond cascading in quadratic nonlinear optical materials,” Phys. Rev. E 52, 3166–3183 (1995).
  22. J. W. Haus, R. Viswanathan, A. Kalocsai, J. Cole, M. Scalora, and J. Theimer, “Enhanced second-harmonic generation in weakly periodic media,” Phys. Rev. A 57, 2120–2132 (1998).
  23. M. Scalora and M. Crenshaw, “Beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
  24. J. W. Haus, B. Y. Soon, M. Scalora, M. J. Bloemer, C. M. Bowden, C. Sibilia, and A. Zheltikov, “Spatio-temporal instabilities for counter-propagating waves in periodic media,” submitted to Opt. Express.
  25. N. M. Lichinitser, C. J. McKinstrie, C. M. de Sterke, and G. P. Agrawal, “Spatiotemporal instabilities in nonlinear bulk media with Bragg gratings,” J. Opt. Soc. Am. B 18, 45–54 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited