OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2292–2296

Excitons in photonic crystals

T. Stroucken, R. Eichmann, L. Banyai, and S. W. Koch  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 2292-2296 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002292


View Full Text Article

Enhanced HTML    Acrobat PDF (131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Induced surface polarizations are shown to cause significant modifications of the Coulomb interaction potential in photonic crystals. Because the optical properties are dominated by pair states, the locally varying electron–hole correlations induce a space dependence of the optical material response that strongly alters the emission and absorption characteristics. The possibility of designing the pair properties opens novel ways to manipulate the light–matter interaction in dielectric structures.

© 2002 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(130.0250) Integrated optics : Optoelectronics
(130.5990) Integrated optics : Semiconductors
(260.2110) Physical optics : Electromagnetic optics

Citation
T. Stroucken, R. Eichmann, L. Banyai, and S. W. Koch, "Excitons in photonic crystals," J. Opt. Soc. Am. B 19, 2292-2296 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990). [CrossRef] [PubMed]
  4. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994). [CrossRef] [PubMed]
  5. T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997). [CrossRef]
  6. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, “Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths,” Phys. Rev. Lett. 79, 4147–4150 (1997). [CrossRef]
  7. W. Vogel and D. G. Welsch, Quantum Optics (Akademie-Verlag, Berlin, 1994).
  8. A. Tip, “Canonical formalism and quantization for a class of classical fields with application to radiative atomic decay in dielectrics,” Phys. Rev. A 56, 5022–5041 (1997). [CrossRef]
  9. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999). [CrossRef]
  10. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001). [CrossRef]
  11. H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78, 1174–1176 (2001). [CrossRef]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  13. L. V. Kulik, V. D. Kulakovskii, M. Bayer, A. Forchel, N. A. Gippius, and S. G. Tikhodeev, “Dielectric enhancement of excitons in near-surface quantum wells,” Phys. Rev. B 54, R2335–R2338 (1996). [CrossRef]
  14. D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, “Image charges in semiconductor quantum wells: effect on exciton binding energy,” Phys. Rev. B 42, 5906–5909 (1990). [CrossRef]
  15. M. Kira, I. Tittonen, and S. Stenholm, “Two-electron semiconductor gate,” Phys. Rev. B 52, 10 972–10 978 (1995). [CrossRef]
  16. C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of different propagation schemes for the time dependent Schrödinger equation,” J. Comput. Phys. 94, 59–80 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited