OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 2, Iss. 11 — Nov. 1, 1985
  • pp: 1791–1798

Interference of atoms in separated optical fields

V. P. Chebotayev, B. Ya. Dubetsky, A. P. Kasantsev, and V. P. Yakovlev  »View Author Affiliations

JOSA B, Vol. 2, Issue 11, pp. 1791-1798 (1985)

View Full Text Article

Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the interference of atoms caused by the wave nature of their motion. Coherently interfering beams of particles may be obtained by using the diffraction of atoms from separated standing waves resonant with the transition between the ground and excited states of the atoms. Interference arises with and without spatial separation of the diffracted atomic beams. A problem concerning two-quantum perturbation of the wave function of an atom in the ground state by a standing-wave field has been solved. Both amplitude and phase perturbation are taken into account. We show that in spite of the absence of coherence in the incident beam and a rapid decay of the coherence induced by the standing wave for scattered spatially overlapping beams, the interference can be observed for the conditions of an echo. We first consider the phenomenon of an echo under the quantum-mechanical action of light on the translational degrees of freedom. We show that owing to this phenomenon phase memory can be transferred through the ground state over unlimitedly large distances. Owing to the interference of the density harmonics, a periodic structure in the spatial distribution of the atomic density with a period of less than one wavelength of the light is localized at distances of the order of the distance between the fields. The harmonic amplitude is calculated for instantaneous excitation in the case in which the duration of the excitation is comparable with the backward Doppler linewidth in the beam and for scattering under Bragg conditions. In the latter case we show that the effective temperature of the atoms participating in the interference is less than one recoil energy.

© 1985 Optical Society of America

V. P. Chebotayev, B. Ya. Dubetsky, A. P. Kasantsev, and V. P. Yakovlev, "Interference of atoms in separated optical fields," J. Opt. Soc. Am. B 2, 1791-1798 (1985)

Sort:  Author  |  Journal  |  Reset


  1. U. Bonse and H. Rauche, eds., Neutron Interferometry. Proceedings of the International Workshop at the Institute Langeuin, Grenoble, France (Oxford U. Press, Oxford, 1979).
  2. B. Ya. Dubetsky, A. P. Kazantsev, V. P. Chebotayev, and V. P. Yakovlev, Pis'ma Eksp. Teor. Fiz. 39, 531 (1984).
  3. A. P. Kazantsev and G. I. Surdutovich. Pis'ma Zh. Eksp. Teor. Fiz. 21, 346 (1975).
  4. G. A. Delone, V. A. Grinchuk, A. P. Kazantsev, and G. I. Surdutovich, Opt. Commun. 25, 399 (1978).
  5. R. J. Cook and A. F. Bernhardt, Phys. Rev. A 18, 2533 (1978).
  6. E. V. Baklanov, B. Ya. Dubetsky, and V. M. Semibalamut, Zh. Eksp. Teor. Fiz. 76, 482 (1979).
  7. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Pis'ma Zh. Eksp. Teor. Fiz. 31, 542 (1980).
  8. A. F. Bernhardt and W. B. Shore, Phys. Rev. A 23, 1290 (1981).
  9. E. Arimondo, A. Bambini, and S. Stenholm, Phys. Rev. A 24, 898 (1981).
  10. A. P. Kazantsev, G. I. Surdutovich, D. O. Chudesnikov, and V. P. Yakovlev, Opt. Commun. 52, 313 (1985).
  11. E. Arimondo, H. Lew, and T. Oka, Phys. Rev. Lett. 43, 753 (1979).
  12. V. A. Grinchuk, E. F. Kuzin, M. L. Nagayeva, G. A. Ryabenko, A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Pis'ma Zh. Eksp. Teor. Fiz. 34, 395 (1981); Phys. Lett. A 86, 136 (1981).
  13. P. E. Moskowitz, P. L. Gould, S. R. Atlas, and D. E. Pritchard, Phys. Rev. Lett. 51, 370 (1983).
  14. W. D. Phillips, ed., Laser-Cooled and Trapped Atoms, Proceedings of Workshop on Spectroscopic Applications of Slow Atomic Beams, Nat. Bur. Stand. (U.S.) Spec. Publ. 653 (U.S. Government Printing Office, Washington, D.C., 1983).
  15. R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. QE-17, 1566 (1981).
  16. V. P. Chebotayev, Appl. Phys. 15, 219 (1978).
  17. E. V. Baklanov, B. Ya. Dubetsky, and V. P. Chebotayev. Appl. Phys. 9, 171 (1976).
  18. B. Ya. Dubetsky and V. M. Semibalamut, in Abstracts of the 6th International Conference on Atomic Physics, R. Damburg, ed. (Riga, USSR, 1978), p. 21.
  19. B. Ya. Dubetsky, Kvantovaya Elektron. 10, 1203 (1983).
  20. S. N. Bagayev, A. S. Dychkov, and V. P. Chebotayev, Pis'ma Zh. Eksp. Teor. Fiz. 26, 591 (1977).
  21. J. C. Bergquist, R. L. Barger, and D. J. Glase, Appl. Phys. Lett. 34, 850 (1979).
  22. E. V. Baklanov and V. P. Chebotayev, Zh. Eksp. Teor. Fiz. 62, 541 (1972).
  23. B. Ya. Dubetsky, Zh. Eksp. Teor. Fiz. 86, 1981 (1984).
  24. V. S. Butylkin, Yu. G. Khronopulo, E. I. Yakubovich, Zh. Eksp. Teor. Fiz. 71, 1712 (1976).
  25. D. O. Chudesnikov and V. P. Yakovlev, in Nonlinear Electromagnetic Phenomena in the Substance, Yu. A. Vdovin and V. P. Yakovlev, eds. (Energoatomizdat, Moscow, 1984), p. 116.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited