OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 2, Iss. 11 — Nov. 1, 1985
  • pp: 1853–1860

Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam

Soo Chang and Sang Soo Lee  »View Author Affiliations


JOSA B, Vol. 2, Issue 11, pp. 1853-1860 (1985)
http://dx.doi.org/10.1364/JOSAB.2.001853


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An expression for a circularly polarized Gaussian laser beam is obtained from the electromagnetic vector potential A, of which the scalar part becomes the complex-source-point spherical wave. Based on the theory of laser-beam scattering by a stationary homogeneous sphere, the analytical formulas are derived for the optical torque components exerted on the levitated sphere in the circularly polarized focused laser beam. The optical torque is numerically calculated, and interpretations of the results are presented. For a sphere with size parameters ρ = (2πα/λ) = 10π and complex refractive index N = 1.47 + i0.000001, levitated at the center of a 1-W Ar+ laser beam, the z component of angular velocity in air ωrot,z is found to be about 4.0 rad/sec.

© 1985 Optical Society of America

History
Original Manuscript: February 25, 1985
Manuscript Accepted: August 8, 1985
Published: November 1, 1985

Citation
Soo Chang and Sang Soo Lee, "Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam," J. Opt. Soc. Am. B 2, 1853-1860 (1985)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-2-11-1853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. J. S. Kim, S. S. Lee, “Radiation pressure on a dielectric sphere in a Gaussian laser beam,” Opt. Acta 29, 801–806 (1982). [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). [CrossRef]
  4. A. Ashkin, “The pressure of laser light,” Sci. Am. 226, 63–71 (1972). [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974). [CrossRef]
  6. A. Ashkin, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975). [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976). [CrossRef]
  8. G. Roosen, C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
  9. G. Roosen, B. Delaunay, C. Imbert, “Radiation pressure exerted by a light beam on refractive spheres: theoretical and experimental study,” J. Opt. 8, 181–187 (1977). [CrossRef]
  10. G. Roosen, “A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189–194 (1977). [CrossRef]
  11. G. Roosen, C. Imbert, “The TEM01* mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978). [CrossRef]
  12. G. Roosen, S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979). [CrossRef]
  13. G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979). [CrossRef]
  14. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980). [CrossRef] [PubMed]
  15. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977). [CrossRef]
  16. G. Grehan, G. Gouesbet, “Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light,” Appl. Opt. 19, 2485–2487 (1980). [CrossRef] [PubMed]
  17. A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980). [CrossRef] [PubMed]
  18. A. Ashkin, J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976). [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977). [CrossRef]
  20. P. L. Marston, J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly-polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984. [CrossRef]
  21. J. S. Kim, S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983). [CrossRef]
  22. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  23. G. A. Descamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7, 684–685 (1971). [CrossRef]
  24. L. B. Felsen, “Evanescent waves,” J. Opt. Soc. Am. 66, 751–760 (1976). [CrossRef]
  25. S. Y. Shin, L. B. Felsen, “Gaussian beam modes by multipoles with complex source points,” J. Opt. Soc. Am. 67, 699–700 (1977). [CrossRef]
  26. L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  27. M. Couture, P. A. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981). [CrossRef]
  28. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 414–420, 485–486.
  29. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 429.
  30. E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981), pp. 160–170.
  31. P. Chylek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross-section,” J. Opt. Soc. Am. 66, 285–287 (1976). [CrossRef]
  32. P. Chylek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978). [CrossRef]
  33. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983). [CrossRef]
  34. T. R. Lettieri, W. D. Jenkins, D. A. Swyt, “Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization ratio,” Appl. Opt. 20, 2799–2805 (1981). [CrossRef] [PubMed]
  35. L. D. Landau, E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), pp. 63–69.
  36. G. Arfken, Mathematical Methods for Physicists (Academic, New York, 1970), pp. 524–525, 560–561.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited