OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 109–112

Multielectron ionization processes in ultrastrong laser fields

Enam A. Chowdhury and Barry C. Walker  »View Author Affiliations

JOSA B, Vol. 20, Issue 1, pp. 109-112 (2003)

View Full Text Article

Acrobat PDF (124 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ionization of neon was studied in strong (10<sup>14</sup>–10<sup>16</sup> W/cm<sup>2</sup>) and ultrastrong (10<sup>17</sup>–10<sup>18</sup> W/cm<sup>2</sup>) laser fields. Measurements of ionization yields in ultrastrong fields reveal that they are dominated by sequential tunneling ionization of the ion charge states. The rescattering mechanism, identified with the generation of high-order harmonics and multiple electron ionization in strong fields, is modeled for ultrastrong fields and is shown to be reduced by orders of magnitude when compared with strong-field ionization. The results from the model are consistent with the experimental results and indicate that the reduced core size for ions and the Lorentz force in ultrastrong fields combine to reduce rescattering in ultrastrong fields.

© 2003 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(020.4180) Atomic and molecular physics : Multiphoton processes
(320.7120) Ultrafast optics : Ultrafast phenomena

Enam A. Chowdhury and Barry C. Walker, "Multielectron ionization processes in ultrastrong laser fields," J. Opt. Soc. Am. B 20, 109-112 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. B. Sheehy, R. Lafon, M. Widmer, B. Walker, L. F. DiMauro, P. Agostini, and K. C. Kulander, “Single- and multiple-electron dynamics in the strong-field tunneling limit,” Phys. Rev. A 58, 3942–3952 (1998).
  2. D. Fittinghoff, P. Bolton, B. Chang, and K. Kulander, “Observation of nonsequential double ionization of helium with optical tunneling,” Phys. Rev. Lett. 69, 2642–2645 (1992).
  3. X. Li, A. L’Huillier, M. Ferray, L. Lompre, and G. Mainfray, “Multiple-harmonic generation in rare gases at high laser intensity,” Phys. Rev. A 39, 5751–5761 (1989).
  4. V. Bhardwaj, D. Rayner, D. Villenueve, and P. Corkum, “Quantum interference in double ionization and fragmentation of C6H6 in intense laser fields,” Phys. Rev. Lett. 87, 253003 (2001).
  5. P. Paul, E. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
  6. M. Dammasch, M. Dorr, U. Eichmann, E. Lenz, and W. Sander, “Relativistic laser-field-drift suppression of nonsequential multiple ionization,” Phys. Rev. A 64, 061402 (2001).
  7. B. Walker, B. Sheehy, L. DiMauro, P. Agostini, K. Schafer, and K. Kulander, “Precision measurement of strong-field double ionization of helium,” Phys. Rev. Lett. 73, 1227–1230 (1994).
  8. R. Lafon, J. Chaloupka, B. Sheehy, P. Paul, P. Agostini, K. Kulander, and L. Dimauro, “Electron energy spectra from intense laser double ionization of helium,” Phys. Rev. Lett. 86, 2762–2765 (2001).
  9. See, for example, T. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmar, and R. Dorner, “Correlated electron emission in multiphoton double ionization,” Nature 405, 658–661 (2000).
  10. R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. D. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, K. Hoffmann, and W. Sandner, “Momentum distributions of Nen+ ions created by an intense ultrashort laser pulse,” Phys. Rev. Lett. 84, 447–450 (2000).
  11. J. Z. H. Yang and B. C. Walker, “0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti:sapphire regenerative amplifier,” Opt. Lett. 26, 453–455 (2001).
  12. E. A. Chowdhury, C. P. J. Barty, and B. C. Walker, “‘Nonrelativistic’ ionization of the L-shell states in argon by a ‘relativistic’ 1019 W/cm2 laser field,” Phys. Rev. A 63, 042712 (2001).
  13. V. Bhardwaj, S. Aseyev, M. Mehendale, G. Yudin, D. Villeneuve, D. Rayner, M. Ivanov, and P. Corkum, “Few cycle dynamics of multiphoton double ionization,” Phys. Rev. Lett. 86, 3522–3525 (2001).
  14. S. Larochelle, A. Talebpour, and S. L. Chin, “Non-sequentialmultiple ionization of rare gas atoms in a Ti:sapphire laser field,” J. Phys. B 31, 1201–1214 (1998).
  15. L. D. Landau, Quantum Mechanics: Non-relativistic Theory (Pergamon, New York 1977), p. 293.
  16. P. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
  17. A. Becker and F. H. M. Faisal, “Interplay of electron correlation and intense field dynamics in the double ionization of helium,” Phys. Rev. A 59, R1742–R1745 (1999).
  18. A. Becker and F. H. M. Faisal, “Interpretation of momentum distribution of recoil ions from laser induced nonsequential double ionization,” Phys. Rev. Lett. 84, 3546–3549 (2000).
  19. S. McNaught, J. Knauer, and D. Meyerhofer, “Photoelectron initial conditions for tunneling ionization in a linearly polarized laser,” Phys. Rev. A 58, 1399–1411 (1998).
  20. See, for example, G. Paulus, W. Becker, W. Nicklich, and H. Walther, “Rescattering effects in above-threshold ionization—a classical model,” J. Phys. B 27, L703–L708 (1994).
  21. B. Walker, B. Sheehy, K. Kulander, and L. DiMauro, “Elastic rescattering in the strong field tunneling limit,” Phys. Rev. Lett. 77, 5031–5034 (1996).
  22. R. W. Brankin, I. Gladwell, and L. F. Shampine, “RKSUITE Release 1.0 Nov 1991,” Numerical Algorithms Group Ltd., Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, U.K.
  23. A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).
  24. W. Lotz, “An empirical formula for the electron-impact ionization cross-section,” Z. Phys. 206, 205–211 (1967).
  25. W. Lotz, “Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium,” Z. Phys. 216, 241–247 (1968).
  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, “Gaussian 98, Revision A.9,” Gaussian, Inc., Pittsburgh, Pa., 1998.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited