OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 125–131

Hydrodynamics of particle formation following femtosecond laser ablation

Thornton Ernest Glover  »View Author Affiliations

JOSA B, Vol. 20, Issue 1, pp. 125-131 (2003)

View Full Text Article

Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ablation driven by intense, femtosecond laser pulses offers a novel route to fabrication of nanometer-sized particles. I model particle formation by considering the hydrodynamics of material expansion into vacuum. Modeling reveals rapid material dilution and cooling. Vacuum expansion is found to quench the ejected material 1–3 orders of magnitude more efficiently than thermal conduction quenches the residual bulk surface. Efficient quenching implies that solid-phase particles are produced rapidly (in ≪1 ns) following laser excitation; this may allow unique material states to be frozen within the ejected particles. Finally, the mean particle size is estimated to range from ∼1 to ∼10 nm for initial lattice temperatures ranging from 0.3 to 10 eV.

© 2003 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7120) Ultrafast optics : Ultrafast phenomena
(350.3390) Other areas of optics : Laser materials processing

Thornton Ernest Glover, "Hydrodynamics of particle formation following femtosecond laser ablation," J. Opt. Soc. Am. B 20, 125-131 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
  2. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
  3. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 68036807 (1999).
  4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162–163 (1985).
  5. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
  6. B. L. Holian and D. E. Grady, “Fragmentation by molecular dynamics: the microscopic ‘Big Bang, ’” Phys. Rev. Lett. 60, 1355–1358 (1988).
  7. L. Oddershede, P. Dimon, and J. Bohr, “Self-organized criticality in fragmenting,” Phys. Rev. Lett. 71, 3107–3110 (1993).
  8. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2, 595–599 (1985).
  9. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, and D. von der Linde, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
  10. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, “Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy,” J. Appl. Phys. 85, 3301–3309 (1999).
  11. J. R. Goldman and J. A. Prybyla, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett. 72, 1364–1367 (1994).
  12. H. L. Anderson, ed., Physics Vade Mecum (American Institute of Physics, New York, 1989).
  13. M. G. Grimaldi, P. Baeri, and M. A. Malvezzi, “Melting temperature of unrelaxed amorphous silicon,” Phys. Rev. B 44, 1546–1553 (1991).
  14. H. C. Gerritsen, H. van Brug, F. Bijkerk, K. Murakami, and M. J. van der Wiel, “A time-resolved x-ray absorption study of amorphous Si during pulsed laser irradiation,” J. Appl. Phys. 60, 1774–1783 (1986).
  15. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1008 (1983).
  16. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B 51, 14186–14198 (1995).
  17. B. Striker, A. Pospieszczyk, and J. A. Tagle, “Measurement of lattice temperature of silicon during pulsed laser annealing,” Phys. Rev. Lett. 47, 356–358 (1981).
  18. J. F. Young and H. M. van Driel, “Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects,” Phys. Rev. B 26, 2147–2158 (1982).
  19. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron–hole plasmas in silicon,” Phys. Rev. B 61, 2643–2649 (2000).
  20. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987).
  21. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986).
  22. S. I. Anisimov, D. Bauerle, and B. S. Luk’yanchuk, “Gas dynamics and film profiles in pulsed-laser deposition of materials,” Phys. Rev. B 48, 12076–12081 (1993).
  23. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000).
  24. N. F. Mott, Metal–Insulator Transitions (Barnes and Noble, New York, 1974).
  25. D. A. Young, Lawrence Livermore National Laboratory, Livermore, Calif., 94550–9234 (personal communication, January 21, 2002).
  26. G. Devaud and D. Turnbull, “Undercooling of molten silicon,” Appl. Phys. Lett. 46, 844–845 (1985).
  27. T. Ohyanagi, A. Miyashita, K. Murakami, and O. Yoda, “Time-and-space resolved x-ray absorption spectroscopy of laser-ablated Si particles,” Jpn. J. Appl. Phys. 33, 2586–2592 (1994).
  28. D. E. Grady, “Local inertial effects in dynamic fragmentation,” J. Appl. Phys. 53, 322–325 (1982).
  29. A. Strachan and C. O. Dorso, “Timescales in fragmentation,” Phys. Rev. C 55, 775–787 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited