OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 152–157

Breakdown of the slowly-varying-amplitude approximation: generation of backward-traveling, second-harmonic light

J. Z. Sanborn, C. Hellings, and T. D. Donnelly  »View Author Affiliations


JOSA B, Vol. 20, Issue 1, pp. 152-157 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000152


View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By numerically solving the nonlinear field equations, we simulate second-harmonic generation by laser pulses within a nonlinear medium without making the usual slowly-varying-amplitude approximation, an approximation which may fail when laser pulses of moderate intensity or ultrashort duration are used to drive a nonlinear process. Under these conditions we show that a backward-traveling, second-harmonic wave is created, and that the magnitude of this wave is indicative of the breakdown of the slowly-varying-amplitude approximation. Conditions necessary for experimental detection of this wave are discussed.

© 2003 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4160) Nonlinear optics : Multiharmonic generation
(350.5500) Other areas of optics : Propagation

Citation
J. Z. Sanborn, C. Hellings, and T. D. Donnelly, "Breakdown of the slowly-varying-amplitude approximation: generation of backward-traveling, second-harmonic light," J. Opt. Soc. Am. B 20, 152-157 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-1-152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  3. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  4. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966). [CrossRef]
  5. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  6. L. W. Casperson, “Field-equation approximations and amplification in high gain lasers: numeric results,” Phys. Rev. A 44, 3291–3304 (1991). [CrossRef] [PubMed]
  7. L. W. Casperson, “Field-equation approximations and amplification in high gain lasers: analytic results,” Phys. Rev. A 44, 3305–3316 (1991). [CrossRef] [PubMed]
  8. L. W. Casperson, “Field-equation approximation and the dynamics of high-gain lasers,” Phys. Rev. A 43, 5057–5067 (1991). [CrossRef] [PubMed]
  9. S. Hughes, “Breakdown of the area theorem: carrier-wave rabi flopping of femtosecond optical pulses,” Phys. Rev. Lett. 81, 3363–3366 (1998). [CrossRef]
  10. F. Bloch and A. J. Siegert, “Magnetic resonance for nonrotating fields,” Phys. Rev. 57, 522–527 (1940). [CrossRef]
  11. For a discussion of the rotating-wave approximation in the context of optical phenomena see L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (New York, Dover, 1987), Chap. 2.
  12. Y. J. Ding, J. U. Kang, and J. B. Khurgin, “Theory of backward second-harmonic and third-harmonic generation using laser pulses in quasi-phase-matched second-order nonlinear medium,” IEEE J. Quantum Electron. 34, 966–974 (1998). [CrossRef]
  13. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, “Backward second-harmonic generation in periodically poled lithium niobate,” J. Opt. Soc. Am. B 15, 1561–1566 (1998). [CrossRef]
  14. X. H. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett. 24, 127–129 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited