OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 171–181

Application of frequency-domain interferometry in the extreme-ultraviolet range by use of high-order harmonics

Jean-Francois Hergott, Thierry Auguste, Pascal Salières, Laurent Le Déroff, Pascal Monot, Pascal d'Oliveira, David Campo, Hamed Merdji, and Bertrand Carré  »View Author Affiliations


JOSA B, Vol. 20, Issue 1, pp. 171-181 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000171


View Full Text Article

Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply the frequency-domain interferometry technique in the extreme-ultraviolet (XUV) range using high-order harmonics. The technique is first used to study the influence of ionization of the generating gas on the harmonic emission. We report a thorough study of the fringe contrast as a function of the generating parameters: gas pressure, laser intensity and focus position, harmonic order, delay, and relative intensity of the two laser pulses. We show that two phase-locked time-delayed harmonic pulses can be produced under optimal conditions. However, a strong distortion of the fringe pattern (low contrast and large asymmetry) can be induced by the deleterious effects of the medium ionization, i.e., depletion of the emitters, laser defocusing, and loss of mutual coherence that is due to free-electron dispersion. XUV frequency-domain interferometry is then applied to the measurement of the electron density of a plasma created by optical field-induced ionization of a high-pressure helium jet by use of an intense short-pulse laser. The measured temporal evolution of the electron density shows that the resolution of our experimental setup was of the order of 200 fs, which, to our knowledge, provides the first XUV interferometry measurement on a femtosecond time scale.

© 2003 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(190.0190) Nonlinear optics : Nonlinear optics
(190.4160) Nonlinear optics : Multiharmonic generation
(260.7200) Physical optics : Ultraviolet, extreme
(350.5400) Other areas of optics : Plasmas

Citation
Jean-Francois Hergott, Thierry Auguste, Pascal Salières, Laurent Le Déroff, Pascal Monot, Pascal d'Oliveira, David Campo, Hamed Merdji, and Bertrand Carré, "Application of frequency-domain interferometry in the extreme-ultraviolet range by use of high-order harmonics," J. Opt. Soc. Am. B 20, 171-181 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-1-171


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Salières, A. L’Huillier, Ph. Antoine, and M. Lewenstein, “Study of the spatial and temporal cohererence of high-order harmonics,” Adv. At., Mol. Opt. Phys. 41, 83–142 (1999).
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
  3. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x-rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967–2970 (1997).
  4. Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278, 661–664 (1997).
  5. M. Schnürer, Ch. Spielmann, P. Wobrauschek, C. Streli, N. H. Burnett, C. Kan, K. Ferencz, R. Koppitsch, Z. Cheng, T. Brabec, and F. Krausz, “Coherent 0.5-keV x-ray emission from helium driven by a sub-10-fs laser,” Phys. Rev. Lett. 80, 3236–3239 (1998).
  6. J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carré, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66, 021801–1–021801–4 (2002).
  7. T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson, “Spatial coherence measurement of soft x-ray radiation produced by high-order harmonic generation,” Phys. Rev. Lett. 77, 4756–4759 (1996).
  8. L. Le Déroff, P. Salières, B. Carré, D. Joyeux, and D. Phalippou, “Measurement of the degree of spatial coherence of high-order harmonics using a Fresnel-mirror interferometer,” Phys. Rev. A 61, 043802–1–043802–9 (2000).
  9. P. Salières, T. Ditmire, K. S. Budil, M. D. Perry, and A. L’Huillier, “Spatial profiles of high-order harmonics generated by a femtosecond Cr:LISAF laser,” J. Phys. B 27, L217–L222 (1994).
  10. P. Salières, A. L’Huillier, and M. Lewenstein, “Coherence control of high-order harmonics,” Phys. Rev. Lett. 74, 3776–3779 (1995).
  11. M. Bellini, C. Lyngå, A. Tozzi, M. B. Gaarde, T. W. Hänsch, A. L’Huillier, and C.-G. Wahlström, “Temporal coherence of ultrashort high-order harmonic pulses,” Phys. Rev. Lett. 81, 297–300 (1998).
  12. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold, W. Becker, D. B. Milosevic, A. Sanpera, and M. Lewenstein, “Feynman’s path-integral approach for intense-laser-atom interactions,” Science 292, 902–905 (2001).
  13. L. Le Déroff, P. Salières, and B. Carré, “Beam-quality measurement of a focused high-order harmonic beam,” Opt. Lett. 23, 1544–1546 (1998).
  14. T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank, “Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation,” Phys. Rev. Lett. 76, 2468–2471 (1996).
  15. A. Bouhal, P. Salières, P. Breger, P. Agostini, G. Hamoniaux, A. Mysyrowicz, A. Antonetti, R. Constantinescu, and H. G. Muller, “Temporal dependence of high-order harmonics in the presence of strong ionization,” Phys. Rev. A 58, 389–399 (1998).
  16. E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P. Agostini, C. Le Blanc, G. Mullot, and G. Cheriaux, “Ponderomotive streaking of the ionization potential as a method for measuring pulse durations in the XUV domain with fs resolution,” Phys. Rev. A 62, 061801–1–043802–4 (2000).
  17. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001).
  18. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
  19. J. Larsson, E. Mevel, R. Zerne, A. L’Huillier, C.-G. Wahlström, and S. Svanberg, “Two-colour time-resolved spectroscopy of helium using high-order harmonics,” J. Phys. B 28, L53–L58 (1995).
  20. M. Gisselbrecht, D. Descamps, C. Lynga, A. L’Huillier, C.-G. Wahlström, and M. Meyer, “Absolute photoionization cross sections of excited He states in the near-threshold region,” Phys. Rev. Lett. 82, 4607–4610 (1999).
  21. S. L. Sorensen, O. Björneholm, I. Hjelte, T. Kihlgren, G. Öhrwall, S. Sundin, S. Svensson, S. Buil, D. Descamps, A. L’Huillier, J. Norin, and C.-G. Wahlström, “Femtosecond pump–probe photoelectron spectroscopy of predissociative Rydberg states in acetylene,” J. Chem. Phys. 112, 8038–8042 (2000).
  22. M. Bauer, C. Lei, K. Read, R. Tobey, J. Gland, M. M. Murnane, and H. C. Kapteyn, “Direct observation of surface chemistry using ultrafast soft-x-ray pulses,” Phys. Rev. Lett. 87, 025501–1–025501–4 (2001).
  23. L. Nugent-Glandorf, M. Scheer, D. A. Samuels, A. M. Mulhisen, E. R. Grant, X. Yang, V. M. Bierbaum, and S. R. Leone, “Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br2,” Phys. Rev. Lett. 87, 193002 (2001).
  24. R. Haight and D. R. Peale, “Antibonding state on the Ge(111):As surface: spectroscopy and dynamics,” Phys. Rev. Lett. 70, 3979–3982 (1993).
  25. F. Quéré, S. Guizard, Ph. Martin, G. Petite, H. Merdji, B. Carré, J-F. Hergott, and L. Le Déroff, “Hot-electron relaxation in quartz using high-order harmonics,” Phys. Rev. B 61, 9883–9886 (2000).
  26. W. Theobald, R. Hässner, C. Wülker, and R. Sauerbrey, “Temporally resolved measurement of electron densities (>1023 cm−3) with high harmonics,” Phys. Rev. Lett. 77, 298–301 (1996).
  27. D. Joyeux, F. Polack, and D. Phalippou, “An interferometric determination of the refractive part of optical constants for carbon and silver across x-ray absorption edges,” Rev. Sci. Instrum. 70, 2921–2926 (1999).
  28. L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. L. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft x-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
  29. J. J. Rocca, C. H. Moreno, M. C. Marconi, and K. Kanizay, “Soft-x-ray laser interferometry of a plasma with a tabletop laser and a Lloyd’s mirror,” Opt. Lett. 24, 420–422 (1999).
  30. F. Albert, Ph. Zeitoun, P. Jaeglé, D. Joyeux, M. Boussoukaya, A. Carillon, S. Hubert, G. Jamelot, A. Klisnick, D. Phalippou, D. Ros, and A. Zeitoun-Fakiris, “Metal-surface mapping by means of soft-x-ray laser interferometry,” Phys. Rev. B 60, 11089–11094 (1999).
  31. R. Zerne, C. Altucci, M. Bellini, M. B. Gaarde, T. W. Hänsch, A. L’Huillier, C. Lyngå, and C.-G. Wahlström, “Phase-locked high-order harmonic sources,” Phys. Rev. Lett. 79, 1006–1009 (1997).
  32. P. Salières, L. Le Déroff, T. Auguste, P. Monot, P. d’Oliveira, D. Campo, J.-F. Hergott, H. Merdji, and B. Carré, “Frequency-domain interferometry in the XUV with high-order harmonics,” Phys. Rev. Lett. 83, 5483–5486 (1999).
  33. M. Bellini, S. Cavalieri, C. Corsi, and M. Materazzi, “Phase-locked, time-delayed harmonic pulses for high spectral resolution in the extreme ultraviolet,” Opt. Lett. 26, 1010–1012 (2001).
  34. D. Descamps, C. Lyngå, J. Norin, A. L’Huillier, C.-G. Wahlström, J.-F. Hergott, H. Merdji, P. Salières, M. Bellini, and T. W. Hänsch, “Extreme ultraviolet interferometry measurements with high-order harmonics,” Opt. Lett. 25, 135–137 (2000).
  35. B. Colombeau, T. Dohnalik, and C. Froehly, “Temporal analog of Young experiment,” Acta Phys. Pol. A 78, 85–93 (1990).
  36. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy,” Opt. Lett. 17, 1131–1133 (1992).
  37. J. P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and A. Antonetti, “Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,” Opt. Lett. 19, 1997–1999 (1994).
  38. S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadier, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys. C 8, 1281–1290 (1996).
  39. C. W. Siders, S. P. Leblanc, D. Fisher, T. Tajima, M. C. Downer, A. Babine, A. Stepanov, and A. Sergeev, “Laser wakefield excitation and measurement by femtosecond longitudinal interferometry,” Phys. Rev. Lett. 76, 3570–3573 (1996).
  40. J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. Geindre, A. Antonetti, T. M. Antonsen, Jr., P. Chessa, and P. Mora, “Laser wakefield: experimental study of nonlinear radial electron oscillations,” Phys. Plasmas 5, 1162–1177 (1998).
  41. P. Salières, Ph. Antoine, A. de Bohan, and M. Lewenstein, “Temporal and spectral tailoring of high-order harmonics,” Phys. Rev. Lett. 81, 5544–5547 (1998).
  42. Z. Chang, A. Rundquist, H. Wang, I. Christov, H. C. Kapteyn, and M. M. Murnane, “Temporal phase control of soft-x-ray harmonic emission,” Phys. Rev. A 58, R30–R33 (1998).
  43. M. B. Gaarde, Ph. Antoine, A. L’Huillier, K. J. Schafer, and K. C. Kulander, “Macroscopic studies of short-pulse high-order harmonic generation using the time-dependent Schrödinger equation,” Phys. Rev. A 57, 4553–4560 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited