OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 224–228

Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas

A. Thoss, M. Richardson, G. Korn, M. Faubel, H. Stiel, U. Vogt, and T. Elsaesser  »View Author Affiliations


JOSA B, Vol. 20, Issue 1, pp. 224-228 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000224


View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new, stable, kilohertz femtosecond laser plasma source of hard-x-ray continuum and Kα emission that uses a microscopic liquid jet target that is continuous and debris free. Plasmas produced by ultrashort (50-fs) intense laser pulses from a fine (10–30-μm diameter) liquid Ga jet emit bright 9.3- and 10.3-keV Kα and Kβ lines superimposed on a multikilovolt bremmstrahlung continuum. Kilohertz femtosecond x-ray sources will find many applications in time-resolved x-ray diffraction and microscopy studies. As high-intensity lasers become more compact and operate at increasingly high repetition-rates, they require a target configuration that is both repeatable from shot to shot and debris free. Our target provides a pristine, unperturbed filament surface at rates >100 kHz. A number of liquid metal targets are considered. We show the hard-x-ray spectrum described above. The source was generated by a 50-fs-duration, 1-kHz, 2-W, high-intensity Ti:sapphire laser. Using the same technology, we also generate forward-going sub-mega-electron-volt (sub-MeV) protons from a 10-μm liquid water target at 1-kHz repetition rates. Kilohertz sources of high-energy ions will find many applications in time-resolved particle interaction studies and will lead to efficient generation of short-lived isotopes for use in nuclear medicine and other applications. The protons were detected with CR-39 track detectors in both the forward and the backward directions up to energies of ∼500 keV. As the intensity of compact high-repetition-rate lasers sources increases, we can expect improvements in the energy, conversion efficiency, and directionality to occur. The effect of these developments is discussed. As compact, high-repetition-rate femtosecond laser technology reaches focused intensities of 1019 W/cm2, many new applications of high-repetition-rate hard-x-ray and MeV ion sources will become practical.

© 2003 Optical Society of America

OCIS Codes
(320.5550) Ultrafast optics : Pulses
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

Citation
A. Thoss, M. Richardson, G. Korn, M. Faubel, H. Stiel, U. Vogt, and T. Elsaesser, "Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas," J. Opt. Soc. Am. B 20, 224-228 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-1-224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Korn, A. Thoss, M. Faubel, H. Stiel, U. Voigt, M. Richardson, and T. Elsaesser, “kHz femtosecond laser plasma x-ray source,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 113–114.
  2. D. von der Linde, K. Sokolowski-Tinten, Ch. Blome, C. Dietrich, P. Zhou, A. Tarasevitch, A. Cavallieri, C. W. Siders, C. P. J. Barty, J. Squier, K. Wilson, I. Uschmann, and E. Förster, “Generation and application of ultrashort x-ray pulses,” Laser Part. Beams 19, 15–22 (2001). [CrossRef]
  3. A. Rousse, C. Rischel, and J. C. Gauthier, “Femtosecond x-ray crystallography,” Rev. Mod. Phys. 73, 17–31 (2001). [CrossRef]
  4. A. Maksimchuk, S. Gu, K. Flippo, and D. Umstadter, “Forward ion acceleration in thin films driven by a high-intensity laser,” Phys. Rev. Lett. 84, 4108–4111 (2000). [CrossRef] [PubMed]
  5. E. L. Clark, K. Krushelnick, M. Zepf, F. N. Beg, M. Tatarakis, A. Machacek, M. I. K. Santala, I. Watts, P. A. Norreys, and A. E. Dangor, “Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids,” Phys. Rev. Lett. 85, 1654–1657 (2000). [CrossRef] [PubMed]
  6. S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, and K. Yasuike, “Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets,” Phys. Plasmas 7, 2076–2082 (2000). [CrossRef]
  7. Y. Murakami, Y. Kitagawa, Y. Sentoku, M. Mori, R. Kodama, K. A. Tanaka, K. Mima, and T. Yamanaka, “Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target,” Phys. Plasmas 8, 4138–4143 (2001). [CrossRef]
  8. M. Zepf, E. L. Clark, K. Krushelnick, F. N. Beg, C. Escoda, A. E. Dangor, M. I. K. Santala, M. Tatarakis, I. F. Watts, P. A. Norreys, R. J. Clarke, J. R. Davies, M. A. Sinclair, R. D. Edwards, T. J. Goldsack, I. Spencer, and K. W. D. Ledingham, “Fast particle generation and energy transport in laser–solid interactions,” Phys. Plasmas 8, 2323–2330 (2001). [CrossRef]
  9. V. Bagnoud and F. Salin, “Amplifying laser pulses to the terawatt level at a 1-kilohertz repetition rate,” Appl. Phys. B 70(Suppl), S165–S170 (2000). [CrossRef]
  10. J. Squier, G. Korn, G. Mourou, G. Vaillancourt, and M. Bouvier, “Amplification of femtosecond pulses at 10-kHz repetition rates in Ti:Al2O3,” Opt. Lett. 18, 625–627 (1993). [CrossRef]
  11. O. Albert, H. Wang, D. Liu, Z. Chang, and G. Mourou, “Generation of relativistic intensity pulses at a kilohertz repetition rate,” Opt. Lett. 25, 1125–1127 (2000). [CrossRef]
  12. M. Richardson, D. Torres, C. DePriest, F. Jin, and G. Shimkaveg, “Mass-limited, debris-free laser-plasma EUV source,” Opt. Commun. 145, 109–112 (1998). [CrossRef]
  13. M. Berglund, L. Rymell, H. M. Hertz, and T. Wilhein, “Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation,” Rev. Sci. Instrum. 69, 2361–2364 (1998). [CrossRef]
  14. G. Korn, A. Thoss, H. Stiel, U. Voigt, M. Richardson, T. Elsaesser, and M. Faubel, “Ultrashort 1-kHz laser plasma hard x-ray source,” Opt. Lett. 27, 866–868 (2002). [CrossRef]
  15. A. Thoss, “Radiation emission and particle acceleration from a liquid jet target using a 1-kHz ultrafast laser system,” Ph.D. dissertation (Freie Universität Berlin, Berlin, Germany, 2003).
  16. M. Faubel, “Photoelectron spectroscopy at liquid surfaces,” in Photoionization and Photodetachment, C. Y. Ng, ed. (World Scientific, Singapore, 2000), pp. 634–690.
  17. Amptek Inc., Bedford, Mass.; the signal from the XR-100CR detector was amplified with a PX2CR and recorded with a MCA8000A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited