OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 229–237

Generation of ultrashort hard-x-ray pulses with tabletop laser systems at a 2-kHz repetition rate

Yan Jiang, Taewoo Lee, and Christoph G. Rose-Petruck  »View Author Affiliations

JOSA B, Vol. 20, Issue 1, pp. 229-237 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the generation of ultrafast x-ray pulses at a 2-kHz repetition rate with a new tabletop laser and x-ray generation system. The range of the emitted x-radiation wavelength is approximately a single ångstrom, from 0.3 to 0.1 nm. Specific emphasis is placed on the generation of broad continuum radiation for x-ray absorption spectroscopy. High-contrast laser pulses are desirable for generation of ultrashort pulses, which we achieve by dividing the laser system into a section for generation of high-contrast microjoule pulses followed by pulse cleaning and a section for chirped pulse amplification and pulse compression. Using this system, we generated x radiation from solid-copper and liquid-mercury targets in a helium atmosphere. From copper targets an average x-ray flux of 1013 photons/(s 4π sr keV) at 3 keV and 109 photons/(s 4π sr) above 5 keV photon energy was produced. X radiation from the mercury target did not exhibit emission lines within the spectral range 3–13 keV.

© 2003 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(350.5400) Other areas of optics : Plasmas

Yan Jiang, Taewoo Lee, and Christoph G. Rose-Petruck, "Generation of ultrashort hard-x-ray pulses with tabletop laser systems at a 2-kHz repetition rate," J. Opt. Soc. Am. B 20, 229-237 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Bergsma, M. H. Colodonato, P. M. Edelsten, K. R. Wilson, and D. R. Fredkin, “Transient x-ray scattering calculated from molecular dynamics,” J. Chem. Phys. 84, 6151–6160 (1986). [CrossRef]
  2. B. C. Larson, C. W. White, T. S. Noggle, and D. Mills, “Synchrotron x-ray diffraction study of silicon during pulsed-laser annealing,” Phys. Rev. Lett. 48, 337–340 (1982). [CrossRef]
  3. B. C. Larson and J. Z. Tischler, “Time-resolved materials science opportunities using synchrotron x-ray sources,” in Time-Resolved Electron and X-Ray Diffraction, P. M. Rentzepis, ed., Proc. SPIE 2521, 208–219 (1995). [CrossRef]
  4. J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, B. Rupp, and R. Frahm, “Time-resolved x-ray diffraction study of solid combustion reactions,” Science 249, 1406–1409 (1990). [CrossRef] [PubMed]
  5. J. S. Wark, R. R. Whitlock, A. Hauer, J. E. Swain, and P. J. Solone, “Shock launching in silicon studied with use of pulsed x-ray diffraction,” Phys. Rev. B 35, 9391–9394 (1986). [CrossRef]
  6. J. S. Wark, R. R. Whitlock, A. A. Hauer, J. E. Swain, and P. J. Solone, “Subnanosecond x-ray-diffraction from laser-shocked crystals,” Phys. Rev. B 40, 5705–5714 (1989). [CrossRef]
  7. J. S. Wark, N. C. Woolsey, and R. R. Whitlock, “Time-resolved x-ray diffraction from shock-compressed solids,” in Time-Resolved Electron and X-Ray Diffraction, P. M. Rentzepis, ed., Proc. SPIE 2521, 232–243 (1995). [CrossRef]
  8. H. He, J. S. Wark, E. Foerster, I. Uschmann, O. Renner, M. Kopecky, and W. Blyth, “Double-crystal high-resolution x-ray spectroscopy of laser-produced plasmas,” Rev. Sci. Instrum. 64, 26–30 (1993). [CrossRef]
  9. H. van Wonterghem and P. M. Rentzepis, “Characteristics of a TA photocathode for the generation of picosecond x-ray pulses,” Appl. Phys. Lett. 56, 1005–1007 (1990). [CrossRef]
  10. T. Anderson, I. V. Tomov, and M. P. Rentzepis, “A high repetition rate, picosecond hard x-ray system, and its application to time resolved x-ray diffraction,” J. Chem. Phys. 99, 869–875 (1993). [CrossRef]
  11. I. V. Tomov, P. Chen, and P. M. Rentzepis, “Picosecond time-resolved x-ray-diffraction during laser-pulse heating of an Au(111) crystal,” J. Appl. Crystallogr. 28, 358–362 (1995). [CrossRef]
  12. P. Chen, I. V. Tomov, and P. M. Rentzepis, “Time resolved heat propagation in gold crystals by means of picosecond x-ray diffraction,” J. Chem. Phys. 104, 10001–10007 (1996). [CrossRef]
  13. S. H. Lin, C. H. Chao, H. Ma, and P. M. Rentzepis, “Theory of ultrafast time resolved x-ray diffraction and applications to vaporization kinetics of finite systems,” in Time-Resolved Electron and X-Ray Diffraction, P. M. Rentzepis, ed., Proc. SPIE 2521, 258–268 (1995). [CrossRef]
  14. M. R. Pressprich, M. A. White, Y. Vekhter, and P. Coppens, “Analysis of a metastable electronic excited state of sodium nitroprusside by x-ray crystallography,” J. Am. Chem. Soc. 116, 5233–5238 (1994). [CrossRef]
  15. F. Raksi, K. R. Wilson, Z. M. Jiang, A. Ikhlef, C. Y. Cote, and J. C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6079 (1996). [CrossRef]
  16. C. P. J. Barty, T. Guo, C. Le Blanc, F. Ráksi, C. Rose-Petruck, J. A. Squier, B. Walker, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Sub-20-fs multiterawatt lasers and x-ray applications,” in 5th International Conference on X-Ray Lasers, S. Svanberg and G. G. Wahlström, eds. (Institute of Physics, Bristol, UK, 1996), p. 282.
  17. R. W. Schoenlein, W. P. Leemans, A. H. Chin, P. Volfbeyn, T. E. Glover, P. Balling, M. Zolotorev, K. J. Kim, S. Chattopadhyay, and C. V. Shank, “Femtosecond x-ray pulses at 0.4 Å generated by 90° Thomson scattering: a tool for probing the structural dynamics of materials,” Science 274, 236–238 (1996). [CrossRef]
  18. V. Srajer, T. Tsu-yi, T. Ursby, C. Pradervand, R. Zhong, S.-I. Adachi, W. Schildkamp, D. Bourgeois, M. Wulff, and K. Moffat, “Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography,” Science 274, 1726–1729 (1996). [CrossRef] [PubMed]
  19. G. Mourou and S. Williamson, “Picosecond electron diffraction,” Appl. Phys. Lett. 41, 44–45 (1982). [CrossRef]
  20. S. Williamson and G. Mourou, “Time-resolved laser-induced phase transformation in aluminum,” Phys. Rev. Lett. 52, 2364–2367 (1984). [CrossRef]
  21. L. X. Chen, W. J. H. Jager, G. Jennings, D. J. Gosztola, A. Munkholm, and J. P. Hessler, “Capturing a photoexcited molecular structure through time-domain x-ray absorption fine structure,” Science 292, 262–264 (2001). [CrossRef] [PubMed]
  22. Y. Jiang, T. Lee, W. Li, G. Ketwaroo, and C. Rose-Petruck, “High-average-power 2-kHz laser for generation of ultrashort x-ray pulses,” Opt. Lett. 27, 963–965 (2001). [CrossRef]
  23. Y. Jiang, W. Li, T. Lee, G. Ketwaroo, and C. Rose-Petruck, “Ultrafast x-ray absorption spectroscopy: observing the equilibrium structure and structural dynamics of solvated molecules,” in Applications of X-Rays Generated from Lasers and Other Bright Sources, J. J. Gauthier and G. A. Kyrala, eds., Proc. SPIE 4504, 42–48 (2001). [CrossRef]
  24. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C. W. Siders, F. Ráksi, J. Squier, B. Walker, K. R. Wilson, and C. P. J. Barty, “Picosecond-milliangstrom lattice dynamics measured by ultrafast x-ray diffraction,” Nature 398, 310–312 (1999). [CrossRef]
  25. A. Cavalleri, C. W. Siders, C. Rose-Petruck, R. Jimenez, C. Toth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. H. von Hoegen, and D. von der Linde, “Ultrafast x-ray measurement of laser heating in semiconductors: parameters determining the melting threshold,” Phys. Rev. B 63, 193306/1–193306/4 (2001). [CrossRef]
  26. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M. H. von Hoegen, K. R. Wilson, D. von der Linde, and C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999). [CrossRef] [PubMed]
  27. F. Ráksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Co⁁té, and J.-C. Kieffer, “Ultrafast 2.5 keV x-ray absorption probing of a chemical reaction with 3 ps time resolution,” in Applications of Laser Plasma Radiation II, G. A. Kyrala and M. C. Richardson, eds., Proc. SPIE 2523, 306–315 (1995). [CrossRef]
  28. A. Rousse, “Subpicosecond-scale atomic dynamics: state of the art,” J. Phys. IV: Proc. 9, 57–61 (1999).
  29. C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, “Femtosecond time-resolved x-ray diffraction from laser-heated organic films,” Nature 390, 490–492 (1997). [CrossRef]
  30. A. Rousse, C. Rischel, I. Uschmann, E. Forster, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, and A. Antonetti, “Subpicosecond x-ray diffraction study of laser-induced disorder dynamics above the damage threshold of organic solids,” J. Appl. Crystallogr. 32, 977–981 (1999). [CrossRef]
  31. M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “Generation of efficient ultrafast laser-plasma x-ray sources,” Phys. Fluids B 3, 2409–2413 (1991). [CrossRef]
  32. J. C. Kieffer, M. Chaker, J. P. Matte, H. Pepin, C. Y. Cote, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and O. Peyrusse, “Ultrasfast x-ray sources,” Phys. Fluids B 5, 2676–2681 (1993). [CrossRef]
  33. J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68, 1527–1530 (1992). [CrossRef] [PubMed]
  34. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, “Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,” Opt. Lett. 23, 1384–1386 (1998). [CrossRef]
  35. I. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Design and implementations of a TW-class high-average power laser system,” IEEE J. Quantum Electron. 4, 395–406 (1998). [CrossRef]
  36. C. Le Blanc, E. Baubeau, F. Salin, J. A. Squier, C. P. J. Barty, and C. Spielmann, “Toward a terawatt-kilohertz repetition-rate laser,” IEEE J. Quantum Electron. 4, 407–413 (1998). [CrossRef]
  37. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26, 465–467 (2001). [CrossRef]
  38. V. Bagnoud and F. Salin, “Amplifying laser pulses to the terawatt level at a 1-kilohertz repetition rate,” Appl. Phys. B 70, S165–S170 (2000). [CrossRef]
  39. G. Korn, A. Thoss, M. Faubel, H. Stiel, U. Vogt, M. Richardson, and T. Elsaesser, “1-kHz ultrashort laser plasma hard-x-ray source,” Opt. Lett. 27, 866–868 (2002). [CrossRef]
  40. A. Rousse, C. Rischel, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, “KeV x-ray source toward 100 fs time-resolved x-ray applications,” Inst. Phys. Conf. Ser. 159, 691–697 (1999).
  41. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, T. Guo, C. Tóth, R. Jimenez, C. Rose-Petruck, D. v. d. Linde, K. R. Wilson, and C. P. J. Barty, “Ultrafast movies of atomic motion with femtosecond laser-based x-rays,” in Soft X-Ray Lasers and Applications III, L. B. Da Silva and J. J. Rocca, eds., Proc. SPIE 3776, 302–311 (2000). [CrossRef]
  42. J. C. Kieffer, F. Dorchies, P. Forget, P. Gallant, Z. Jiang, H. Pepin, O. Peyrusse, C. Toth, A. Cavalleri, J. Squier, and K. Wilson, “Femtosecond thermal x-ray pulses from hot solid density plasmas,” Laser Phys. 11, 1201–1204 (2001).
  43. J. C. Kieffer, C. Y. Chien, F. Dorchies, P. Forget, P. Gallant . Z. M. Jiang, and H. Pepin, “Ultrafast laser-based thermal x-ray sources,” C. R. Acad. Sci. Ser. IV 1, 297–303 (2000).
  44. R. Kodama, T. Mochizuki, K. A. Tanaka, and C. Yamanaka, “Enhancement of keV x-ray emission in laser-produced plasmas by a weak prepulse laser,” Appl. Phys. Lett. 50, 720–722 (1987). [CrossRef]
  45. A. Rousse, P. Audebert, J. P. Geindre, F. Fallies, J. C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, “Efficient k-alpha-x-ray source from femtosecond laser-produced plasmas,” Phys. Rev. E 50, 2200–2207 (1994). [CrossRef]
  46. J. C. Gauthier, “Short-pulse laser interaction with solid targets,” Laser Interact. Matter, 140, 1–7 (1995).
  47. W. Theobald, C. Wulker, S. Szatmari, F. P. Schafer, and J. S. Bakos, “Investigation of the interaction of subpicosecond Krf laser pulses with a preformed carbon plasma,” Appl. Phys. B 61, 593–600 (1995). [CrossRef]
  48. J. Steingruber, S. Borgstrom, T. Starczewski, and U. Litzen, “Prepulse dependence of x-ray emission from plasmas created by IR femtosecond laser pulses on solids,” J. Phys. B 29, L75–L81 (1996). [CrossRef]
  49. A. A. Andreev, V. I. Bayanov, A. B. Vankov, A. A. Kozlov, V. M. Komarov, I. V. Kurnin, N. A. Solovev, S. A. Chizhov, and V. E. Yashin, “Emission of x-rays from a plasma formed by a train of picosecond laser pulses,” Kvantovaya Elektron. (Moscow) 24, 79–81 (1997).
  50. C. Y. Cote, J. C. Kieffer, Z. Jiang, A. Ikhlef, and H. Pepin, “keV x-ray emission produced by a sub-picosecond laser interacting with a controlled preformed plasma,” J. Phys. B 31, L883–L889 (1998). [CrossRef]
  51. H. Nakano, P. X. Lu, T. Nishikawa, and N. Uesugi, “Prepulse effects on x-ray emission in keV and sub-keV ranges from Al plasma produced by femtosecond Ti:sapphire laser pulses,” Inst. Phys. Conf. Ser. 159, 535–538 (1999).
  52. T. Nishikawa, H. Nakano, N. Uesugi, M. Nakao, and H. Masuda, “Greatly enhanced soft x-ray generation from femtosecond-laser-produced plasma by using a nanohole-alumina target,” Appl. Phys. Lett. 75, 4079–4081 (1999). [CrossRef]
  53. S. Bastiani, A. Rousse, J. P. Geinder, P. Audebert, C. Quoix, G. Hamoniaux, A. Antonetti, and J.-C. Gauthier, “Experi-mental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths,” Phys. Rev. E 56, 7179–7185 (1997). [CrossRef]
  54. M. Schnurer, R. Nolte, A. Rousse, G. Grillon, G. Cheriaux, M. P. Kalachnikov, P. V. Nickles, and W. Sandner, “Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser,” Phys. Rev. E 61, 4394–4401 (2000). [CrossRef]
  55. M. D. Perry, J. A. Sefcik, T. Cowan, S. Hatchett, A. Hunt, M. Moran, D. Pennington, R. Snavely, and S. C. Wilks, “Hard x-ray production from high intensity laser solid interactions (invited),” Rev. Sci. Instrum. 70, 265–269 (1999). [CrossRef]
  56. P. V. Nickles, M. Schnuerer, M. P. Kalachnikov, and T. Schlegel, “X-ray emission from short-pulse laser plasmas,” Opt. Quantum Electron. 28, 229–239 (1996). [CrossRef]
  57. M. Gratz, C. Tillman, I. Mercer, and S. Svanberg, “X-ray generation for medical applications from a laser-produced plasma,” Appl. Surf. Sci. 96–8, 443–447 (1996). [CrossRef]
  58. A. Zhidkov, A. Sasaki, T. Utsumi, I. Fukumoto, T. Tajima, F. Saito, Y. Hironaka, K. G. Nakamura, K. Kondo, and M. Yoshida, “Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids,” Phys. Rev. E 62, 7232–7240 (2000). [CrossRef]
  59. S. P. Gordon, T. Donnelly, A. Sullivan, H. Hamster, and R. W. Falcone, “X-rays from microstructured targets heated by femtosecond lasers,” Opt. Lett. 19, 484–486 (1994). [CrossRef] [PubMed]
  60. G. Kulcsar, D. Al Mawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L. Zhao, and R. S. Marjoribanks, “Intense picosecond x-ray pulses from laser plasmas by use of nanostructured ‘velvet’ targets,” Phys. Rev. Lett. 84, 5149–5152 (2000). [CrossRef] [PubMed]
  61. T. Nishikawa, H. Nakano, N. Uesugi, and T. Serikawa, “Porous layer effects on soft x-ray radiation emitted from a plasma generated by 130-fs laser pulses irradiating a porous silicon target,” Appl. Phys. B 66, 567–570 (1998). [CrossRef]
  62. R. V. Volkov, V. M. Gordienko, M. S. Dzhidzhoev, B. V. Kamenev, P. K. Kashkarov, Y. V. Ponomarev, A. B. Savel’ev, V. Y. Timoshenko, and A. A. Shashkov, “Generation of hard x-ray radiation by irradiation of porous silicon with ultraintense femtosecond laser pulses,” Quantum Electron. 28, 1–2 (1998). [CrossRef]
  63. R. V. Volkov, V. M. Gordienko, M. S. Dzhidzhoev, M. A. Zhukov, P. M. Mikheev, A. B. Savel’ev, and A. A. Shashkov, “Control of the properties and diagnostics of a dense femtosecond plasma formed from modified targets,” Quantum Electron. 27, 1081–1093 (1997). [CrossRef]
  64. T. Nishikawa, H. Nakano, H. Ahn, N. Uesugi, and T. Serikawa, “X-ray generation enhancement from a laser-produced plasma with a porous silicon target,” Appl. Phys. Lett. 70, 1653–1655 (1997). [CrossRef]
  65. A. B. Savel’ev, V. G. Babaev, M. S. Dzhidzhoev, V. M. Gordienko, M. A. Joukov, A. A. Shashkov, V. Y. Timoshenko, and R. V. Volkov, “Femtosecond plasma in solid targets with reduced thermal conduction: x-ray production and second harmonic generation,” Laser Phys. 8, 637–641 (1998).
  66. T. Nishikawa, H. Nakano, and N. Uesugi, “Enhancement of soft x-ray emission from femtosecond laser-produced plasma with a rectangular groove target,” Inst. Phys. Conf. Ser. 159, 539–542 (1999).
  67. Y. Hironaka, Y. Fujimoto, K. G. Nakamura, and K. Kondo, “Enhancement of hard x-ray emission from a copper target by multiple shots of femtosecond laser pulses,” Appl. Phys. Lett. 74, 1645–1647 (1999). [CrossRef]
  68. W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Reading, Mass., 1988).
  69. P. Gibbon and E. Forster, “Short-pulse laser-plasma interactions,” Plasma Phys. Controlled Fusion 38, 769–793 (1996). [CrossRef]
  70. M. Nantel, J. Itatani, A. C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P. Van Rompay, J. Nees, P. P. Pronko, D. Umstadter, and G. A. Mourou, “Temporal contrast in Ti:sapphire lasers: characterization and control,” IEEE J. Quantum Electron. 4, 449–458 (1998). [CrossRef]
  71. W. Li, “EXAFS measurements of Fe(CO)5 in organic solvents and other x-ray applications,” master’s thesis (Brown University, Providence, R.I., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited