OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 1 — Jan. 1, 2003
  • pp: 45–48

Optical nonlinearity in gamma-ray-irradiated lead-silicate glass

Yuval Isbi, Shmuel Sternklar, and Er'el Granot  »View Author Affiliations


JOSA B, Vol. 20, Issue 1, pp. 45-48 (2003)
http://dx.doi.org/10.1364/JOSAB.20.000045


View Full Text Article

Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gamma-ray-irradiated lead-silicate glass shows enhanced photoinduced quasi-phase-matched second-harmonic generation. This is due to the formation of color centers, which serve as traps for space charge, resulting in an internal dc field due to the coherent photovoltaic effect. The color center formation also enhances the χ(3) nonlinearity, which contributes to the photoinduced quasi-phase-matched second-harmonic generation as well. We separate these two contributions and show their respective roles.

© 2003 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

Citation
Yuval Isbi, Shmuel Sternklar, and Er'el Granot, "Optical nonlinearity in gamma-ray-irradiated lead-silicate glass," J. Opt. Soc. Am. B 20, 45-48 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-1-45


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466–468 (1981).
  2. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett. 11, 516–518 (1986).
  3. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585–587 (1987).
  4. N. M. Lawandy, “Intensity dependence of optically encoded second-harmonic generation in germanosilicate glass: evidence for a light-induced delocalization transition,” Phys. Rev. Lett. 65, 1745–1748 (1990).
  5. Y. Nageno, Jae H. Kyung, and N. M. Lawandy, “Compositional dependence of optically encoded second-harmonic generation in pure binary lead-silicate and ternary barium borosilicate glasses,” Opt. Lett. 20, 2180–2182 (1995).
  6. T. J. Driscoll and N. M. Lawandy, “UV enhancement and erasure of second-harmonic generation in germanosilicate fibers,” Opt. Lett. 17, 571–573 (1992).
  7. B. Ya. Zel’dovich, Yu. E. Kapitskii, and V. M. Churikov, “Induced χ(2) gratings in glasses,” JETP Lett. 53, 78–81 (1991).
  8. M. A. Bolshtyanskii, B. Ya. Zel’dovich, A. Yu. Savchenko, and V. M. Churikov, “Measurements of the phase of a χ(2) hologram recorded in glass,” Tech. Phys. Lett. 19, 293–294 (1993).
  9. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
  10. G. Meltz, W. W. Morey, and W. H. Glen, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
  11. H. G. Park and B. Y. Kim, “Intermodal coupler using permanently photo-induced grating in two-mode optical fibre,” Electron. Lett. 25, 797–799 (1989).
  12. N. Bloemberger, Nonlinear Optics (Benjamin, New York, 1965).
  13. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
  14. E. M. Dianov, P. G. Kazansky, D. S. Starodubov, and D. Yu. Stepanov, “Photoinduced second harmonic generation: observation of charge separation due to the photovoltaic effect,” Sov. Lightwave Commun. 2, 83–88 (1992).
  15. N. B. Baranova, A. N. Chudinov, and B. Ya. Zel’dovich, “Polar asymmetry of photoionization by a field with 〈E3〉≠0. Theory and experiment,” Opt. Commun. 79, 116–120 (1990).
  16. B. Ya. Zel’dovich and A. N. Chudinov, “interference of fields with frequencies ω and 2ω in external photoelectric effect,” JETP Lett. 50, 439–441 (1989).
  17. H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriyev, “Above threshold ionization with a two-colour laser field,” J. Phys. B 23, 2761–2769 (1990).
  18. E. M. Dianov, P. G. Kazansky, and D. Yu. Stepanov, “problem of the photoinduced second harmonic generation in optical fibers,” Sov. J. Quantum Electron. 19, 575–576 (1989)[Kvant. Elektron. (Kiev) 16, 887 (1989)].
  19. E. V. Anoikin, E. M. Dianov, P. G. Kazansky, and D. Yu. Stepanov, “Photoinduced second-harmonic generation in gamma-ray-irradiated optical fibers,” Opt. Lett. 15, 834–836 (1990).
  20. A. Kamal, D. A. Weinberger, and J. H. Chu, “Enhanced second-harmonic generation in with gamma rays irradiated fibers,” in OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper TuGG2.
  21. Y. Isbi, S. Sternklar, E. Granot, L. Boehm, and A. Lewis, “Enhanced photoinduced χ(2) in gamma-ray-irradiated bulk glass,” Opt. Lett. 25, 911–913 (2000).
  22. Y. Isbi, S. Sternklar, E. Granot, L. Boehm, and A. Lewis, “Enhanced χ(3) in γ-ray irradiated bulk glass,” Opt. Commun. 194, 213–216 (2001).
  23. M. J. Liepmann, L. Boehm, and Z. Vagish, “Gamma radiation effects on some optical glasses,” Proc. SPIE 1761, 284–295 (1992).
  24. J. Wong and C. A. Angel, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976), pp. 346–396, 612–659.
  25. N. M. Lawandy, “Light induced transport and delocalization in transparent amorphous systems,” Opt. Commun. 74, 180–184 (1989).
  26. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited