OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2037–2045

Mode areas and field-energy distribution in honeycomb photonic bandgap fibers

Jesper Lægsgaard, Niels Asger Mortensen, and Anders Bjarklev  »View Author Affiliations


JOSA B, Vol. 20, Issue 10, pp. 2037-2045 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002037


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The field-energy distributions and effective mode areas of silica-based photonic bandgap fibers with a honeycomb air-hole structure in the cladding and an extra air hole defining the core are investigated. We present a generalization of the common effective-area definition, suitable for the problem at hand, and compare the results for the photonic bandgap fibers with those of index-guiding microstructured fibers. While the majority of the field energy in the honeycomb photonic bandgap fibers is found to reside in the silica, a substantial fraction (up to ∼30%) can be located in the air holes. This property may show such fibers as particularly interesting for sensor applications, especially those based on nonlinear effects or interaction with other structures (e.g., Bragg gratings) in the glass.

© 2003 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

Citation
Jesper Lægsgaard, Niels Asger Mortensen, and Anders Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-10-2037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight and P. St. J. Russell, “Applied optics: new ways to guide light,” Science 296, 276–277 (2002). [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibres: an endless variety,” IEICE Trans. Electron. E84-C, 585–591 (2001).
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  5. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  6. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, and A. Petersson, “Highly nonlinear photonic crystal fiber with zero dispersion at 1.55 μm,” Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), postdeadline paper FA9.
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  9. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Highly increased photonic band gaps in silica/air structures,” Opt. Commun. 156, 240–244 (1998). [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  11. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001). [CrossRef]
  12. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41, 8–9 (2002). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 2001).
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1996).
  15. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  16. J. Lægsgaard, S. E. B. Libori, and A. Bjarklev, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003). [CrossRef]
  17. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. S. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999). [CrossRef]
  18. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35, 1189–1189 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited