OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2061–2067

Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers

Zhiyun Huang, Yidong Huang, Miaoliang Huang, and Zundu Luo  »View Author Affiliations

JOSA B, Vol. 20, Issue 10, pp. 2061-2067 (2003)

View Full Text Article

Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model of continuous-wave Yb3+-doped microchip lasers based on a quasi-four-level system is proposed, and it is applied to the Yb:YAG microchip laser. The theoretical results of calculations are in agreement with those of experiments. Several ways to improve the properties of Yb3+-doped microchip lasers are described. This model is applicable not only to Yb3+-doped microchip lasers but also to other quasi-four-level microchip lasers.

© 2003 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

Zhiyun Huang, Yidong Huang, Miaoliang Huang, and Zundu Luo, "Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers," J. Opt. Soc. Am. B 20, 2061-2067 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, “Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser,” Opt. Commun. 174, 467–470 (2000).
  2. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
  3. H. Zhang, X. Meng, P. Wang, L. Zhu, X. Liu, R. Cheng, J. Dawes, P. Dekker, S. Zhang, and L. Sun, “Slope efficiency of up to 73% for Yb:Ca4YO(BO3)3 crystal laser pumped by a laser diode,” Appl. Phys. B 68, 1147–1149 (1999).
  4. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51–54 (2002).
  5. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
  6. P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high doping Yb:YAG and its laser performance,” J. Chin. Ceram. Soc. 28, 566–569 (2000).
  7. V. V. Ter-Mikirtychev and V. A. Fromzel, “Directly single-mode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047–1051-nm wavelength range,” Appl. Opt. 39, 4964–4969 (2000).
  8. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38, 5149–5153 (1999).
  9. P. Yang, P. Deng, J. Xu, W. Chen, J. Qiao, and G. Huang, “Spectroscopy and laser performance of Yb3+ doped YAG crystal,” Acta Opt. Sin. 19, 132–135 (1999).
  10. P. Yang, P. Deng, Y. Liu, Y. Zhang, W. Chen, and J. Xu, “Efficient output of a Ti:sapphire laser pumped Yb:YAG thin chip cw laser at 1.053 μm,” Chin. J. Lasers 26, 865–868 (1999).
  11. P. Yang, P. Deng, Y. Liu, Y. Zhang, W. Chen, and J. Xu, “Ti:sapphire pumped 10-at. % Yb:YAG thin chip with 320-mW cw laser output of 1.053 μm,” Chin. J. Lasers 9, 8–10 (2000).
  12. H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser Yb:YAG,” Mater. Lett. 55, 1–7 (2002).
  13. H. Jiang, J. Li, J. Wang, X. Hu, L. Hong, B. Teng, C. Zhang, P. Dekker, and P. Wang, “Growth of Yb:YAl3(BO3)4 crystals and their optical and self-frequency-doubling properties,” J. Cryst. Growth 233, 248–252 (2001).
  14. K. I. Schaffers, L. D. Deloach, and S. A. Payne, “Crystal growth, frequency doubling, and infrared laser performance of Yb3+:BaCaBO3F,” IEEE J. Quantum Electron. 32, 741–748 (1996).
  15. A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, “Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser,” Opt. Lett. 25, 616–618 (2000).
  16. F. Brunner, G. J. Spuhler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power,” Opt. Lett. 25, 1119–1121 (2000).
  17. F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Honninger, F. Salin, A. Aron, F. Mougel, G. Aka, and D. Vivien, “Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” Opt. Lett. 25, 423–425 (2000).
  18. E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys. 87, 4056–4062 (2000).
  19. E. Montoya, J. Capmany, L. E. Bausa, T. Kellner, A. Diening, and G. Huber, “Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO,” Appl. Phys. Lett. 74, 3113–3115 (1999).
  20. A. N. P. Bustamante, D. A. Hammons, R. E. Peale, B. H. T. Chai, M. Richardson, and A. Chin, “Simultaneous cw dual-wavelength laser action and tunability performance of diode-pumped Yb3+:Sr5(VO4)3F,” Opt. Commun. 192, 309–313 (2001).
  21. L. D. Deloach, S. A. Payne, L. K. Smith, W. L. Kway, and W. F. Krupke, “Laser and spectroscopic properties of Sr5(PO4)3F:Yb,” J. Opt. Soc. Am. B 11, 269–276 (1994).
  22. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, and B. H. T. Chai, “Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance,” IEEE J. Quantum Electron. 32, 650–656 (1996).
  23. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
  24. N. Pavel, J. Saikawa, S. Kurimura, and Taira, “Microchip high power radially pumped composite Yb:YAG laser,” in ROMOPTO 2000: Sixth Conference on Optics, V.I. Vlad, ed., Proc. SPIE 4430, 27–34 (2001).
  25. P. Laporta, S. Longhi, G. Sorbello, S. Taccheo, and C. Svelto, “Erbium-ytterbium miniaturized laser devices for optical communications,” in Rare-Earth-Doped Materials and Devices III, S. Jiang and S. Honkanen, eds., Proc. SPIE 3622, 82–91 (1999).
  26. A. Chardon, F. Sanchez, and G. M. Stephan, “Polarization switching of an Er.Yb:Cr:phosphate glass microchip laser,” Ann. Telecommun. 52, 588–593 (1997).
  27. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “Continuous-wave diode radial-pumped composite Yb:YAG laser,” in Proceedings of the International Conference on Lasers 2000, V. J. Corcoran and T. A. Corcoran, eds. (STS Press, McLean, Va., pp. 790–795.
  28. H. Hu and L. Zhang, “A new microlaser material rare-earth doped glasses,” J. Chin. Ceram. Soc. 29, 460–465 (2001).
  29. T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  30. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
  31. A. Brenier, “A new evaluation of Yb3+-doped crystals for laser applications,” J. Lumin. 92, 199–204 (2001).
  32. G. L. Bourdet, “Gain and absorption saturation coupling in end pumped Tm:YVO4 and Tm, Ho:YLF cw amplifiers,” Opt. Commun. 173, 333–340 (2000).
  33. G. L. Bourdet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000).
  34. G. L. Bourdet and G. Lescroart, “Theoretical modeling of mode formation in Tm3+:YVO4 microchip lasers,” Opt. Commun. 150, 136–140 (1998).
  35. G. L. Bourdet and G. Lescroart, “Theoretical modeling and design of a Tm:YVO4 microchip laser,” Opt. Commun. 149, 404–414 (1998).
  36. A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
  37. Y. Zhou, X. Chen, D. Tang, Z. Luo, and W. Yang, “Investigation of the spectroscopic properties of acentric orthorhombic Nd3+:Gd2(MoO4)3 crystals,” Opt. Commun. 167, 99–104 (1999).
  38. N. MacKinnon and B. D. Sinclair, “Pump power induced cavity stability in lithium neodymium tetraphosphate (LNP) microchip lasers,” Opt. Commun. 94, 281–288 (1992).
  39. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30, 1605–1615 (1994).
  40. R. Weber, B. Neuenschwander, and H. P. Weber, “Thermal effects in solid-state laser materials,” Opt. Mater. 11, 245–254 (1999).
  41. Z. Luo and Y. Huang, “An empirical relationship between laser threshold and chemical composition of laser crystals,” Opt. Commun. 206, 159–164 (2002).
  42. T. Omatsu, Y. Kato, M. Shimosegawa, A. Hasegawa, and I. Ogura, “Thermal effects in laser diode pumped self-frequency-doubled NdxY1−xAl3(BO3)4 (NYAB) microchip laser,” Opt. Commun. 118, 302–308 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited