OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2109–2116

Measurement of the χ(2) tensor of the potassium niobate crystal

Michael V. Pack, Darrell J. Armstrong, and Arlee V. Smith  »View Author Affiliations


JOSA B, Vol. 20, Issue 10, pp. 2109-2116 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002109


View Full Text Article

Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the separated-beams, second-harmonic method to measure the full second-order nonlinear optical tensor of KNbO3 relative to dzxy of KDP for a fundamental wavelength of 1064 nm. Assuming dzxy(KDP)= 0.39 pm/V, we find for KNbO3 that dxxx=21.9 pm/V, dxyy=8.9 pm/V, dxzz=12.4 pm/V, dyxy= 9.2 pm/V, and dzxz=13.0 pm/V with estimated uncertainties of ±2–5%.

© 2003 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

Citation
Michael V. Pack, Darrell J. Armstrong, and Arlee V. Smith, "Measurement of the χ(2) tensor of the potassium niobate crystal," J. Opt. Soc. Am. B 20, 2109-2116 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-10-2109


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. W. Boyd, Nonlinear Optics (Academic, New York, 1999).
  2. B. Zysset, I. Biaggio, and P. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992). Our x-ray diffraction measurements confirm that the z-axis lattice spacing is 0.370 nm and that the x- and y-axis lattice spacings are both approximately 0.57 nm, but our resolution was not sufficient to differentiate between the x- and y-axis lattice spacings.
  3. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Guenter, and B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).
  4. J.-C. Baumert, “Nichtlineare optische Eigenschaften und Anwendungen von KNbO3 Kristallen,” Ph.D. dissertation ETH 7802 (Swiss Federal Institute of Technology, Zurich, Switzerland, 1985).
  5. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
  6. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
  7. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
  8. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
  9. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995).
  10. J.-C. Baumert, J. Hoffnagle, and P. Guenter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby, and Nd:YAG laser wavelengths,” 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. SPIE 492, 374–385 (1984).
  11. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18, 524–533 (2001).
  12. W. R. Bosenberg and R. H. Jarman, “Type-II phase-matched KNbO3 optical-parametric oscillator,” Opt. Lett. 18, 1323–1325 (1993).
  13. J.-P. Meyn, M. E. Klein, D. Woll, R. Wallenstein, and D. Rytz, “Periodically poled potassium niobate for second-harmonic generation at 463 nm,” Opt. Lett. 24, 1154–1156 (1999).
  14. J. H. Kim and C. S. Yoon, “Domain switching characteristics and fabrication of periodically poled potassium niobate for second-harmonic generation,” Appl. Phys. Lett. 81, 3332–3334 (2002).
  15. R. J. Gehr and A. V. Smith, “Separated-beam, nonphase-matched, second-harmonic method of characterizing nonlinear optical crystals,” J. Opt. Soc. Am. B 15, 2298–2307 (1998).
  16. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
  17. D. J. Armstrong, M. V. Pack, and A. V. Smith, “Instrument and method for measuring second-order nonlinear optical tensors,” Rev. Sci. Instrum. 74, 3250–3257 (2003).
  18. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
  19. N. Umemura, K. Yoshida, and K. Kato, “Phase-matching properties of KNbO3 in the mid-infrared,” Appl. Opt. 38, 991–994 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited