OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2142–2149

Intracavity wavelength conversions employing a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier

Chang-Qing Xu, John Bracken, and Bo Chen  »View Author Affiliations

JOSA B, Vol. 20, Issue 10, pp. 2142-2149 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intracavity sum-frequency generation and cascaded χ ( 2 ) wavelength conversions in a fiber ring resonator using a MgO-doped LiNbO 3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier were proposed and demonstrated. In the proposed configuration, the resonator enhances the pump light, and efficient wavelength conversion is realized. Dependence of converted signal power upon the position of a coupler used to couple a signal into the resonator and upon the round-trip loss of the resonator was studied in detail. The proposed configuration provides efficient wavelength conversion over a wide range of input signal power and resonator round-trip loss. The configuration provides a cost-effective solution to enhance pump power, thus increasing wavelength-conversion efficiency for practical system applications.

© 2003 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5750) Optical devices : Resonators

Chang-Qing Xu, John Bracken, and Bo Chen, "Intracavity wavelength conversions employing a MgO-doped LiNbO3 quasi-phase-matched waveguide and an erbium-doped fiber amplifier," J. Opt. Soc. Am. B 20, 2142-2149 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997). [CrossRef] [PubMed]
  2. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photon. Technol. Lett. 11, 328–330 (1999). [CrossRef]
  3. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B 14, 3368–3377 (1997). [CrossRef]
  4. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000). [CrossRef]
  5. T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11, 1027–1029 (1999). [CrossRef]
  6. M. B. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, “Doubly-resonant sum-frequency generation spectroscopy for surface studies,” Chem. Phys. Lett. 359, 367–372 (2002). [CrossRef]
  7. B. Humbert, J. Grausem, A. Burneau, M. Spajer, and A. Tadjeddine, “Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution,” Appl. Phys. Lett. 78, 135–137 (2001). [CrossRef]
  8. P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002). [CrossRef]
  9. V. Petrov, F. Noack, F. Rotermund, M. Tanaka, and Y. Okada, “Sum-frequency generation of femtosecond pulses in CsLiB6O10 down to 175 nm,” Appl. Opt. 39, 5076–5079 (2000). [CrossRef]
  10. P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995). [CrossRef]
  11. T. Nayuki, T. Fukuchi, N. Cao, H. Mori, T. Fujii, K. Nemoto, and N. Takeuchi, “Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide,” Appl. Opt. 41, 3659–3664 (2002). [CrossRef] [PubMed]
  12. U. Hempelmann, “All-optical switching due to cascaded second-harmonic generation in directional couplers with laterally varying phase mismatches,” IEEE J. Quantum Electron. 35, 1834–1842 (1999). [CrossRef]
  13. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Optical signal processing and switching with second-order nonlinearities in waveguides,” IEICE Trans. Electron. E83-C, 869–874 (2000).
  14. C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993). [CrossRef]
  15. O. Gorbounova, Y. J. Ding, J. B. Khurgin, S. J. Lee, and A. E. Craig, “Optical frequency shifters based on cascaded second-order nonlinear processes,” Opt. Lett. 21, 558–560 (1996). [CrossRef] [PubMed]
  16. I. Cristiani, G. P. Banfi, V. Degiorgio, and L. Tartara, “Wavelength shifting of optical pulses through cascaded second-order processes in a lithium-niobate channel waveguide,” Appl. Phys. Lett. 75, 1198–1200 (1999). [CrossRef]
  17. K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997). [CrossRef]
  18. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998). [CrossRef]
  19. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996). [CrossRef]
  20. G. T. Moore, “Resonant sum-frequency generation,” IEEE J. Quantum Electron. 38, 12–18 (2002). [CrossRef]
  21. G. T. Moore and K. Koch, “Optical parametric oscillation with intracavity sum-frequency generation,” IEEE J. Quantum Electron. 29, 961–969 (1993). [CrossRef]
  22. C. Q. Xu, K. Shinozaki, H. Okayama, and T. Kamijoh, “Three wave mixing using a fiber ring resonator,” J. Appl. Phys. 81, 1055–1062 (1997). [CrossRef]
  23. D. W. Coutts and J. A. Piper, “One watt average power by second harmonic and sum frequency generation from a single medium scale copper vapor laser,” IEEE J. Quantum Electron. 28, 1761–1764 (1992). [CrossRef]
  24. I. Cristiani, V. Degiorgio, L. Socci, F. Carbone, and M. Romagnoli, “Polarization-insensitive wavelength conversion in a lithium niobate waveguide by the cascading technique,” IEEE Photon. Technol. Lett. 14, 669–671 (2002). [CrossRef]
  25. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  26. C. Q. Xu, B. Zhou, Y. L. Lam, S. Arahira, Y. Ogawa, and H. Ito, “All-optical demultiplexing using LiNbO3 quasiphase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L881–L883 (2001). [CrossRef]
  27. T. Y. Fan, G. J. Dixon, and R. L. Byer, “Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047 μm with intracavity doubling to 523.6 nm,” Opt. Lett. 11, 204–206 (1986). [CrossRef]
  28. W. P. Risk, J. C. Baumert, G. C. Bjorklund, F. M. Schellenberg, and W. Lenth, “Generation of blue light by intracavity frequency mixing of the laser and pump radiation of a miniature neodymium:yttrium aluminum garnet laser,” Appl. Phys. Lett. 52, 85–87 (1988). [CrossRef]
  29. J. Berger, D. F. Welch, W. Streifer, D. R. Scifres, N. J. Hoffman, J. J. Smith, and D. Radecki, “Fiber-bundle coupled, diode end-pumped Nd: YAG laser,” Opt. Lett. 13, 306–308 (1988). [CrossRef] [PubMed]
  30. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847–849 (1984). [CrossRef]
  31. B. Zhou, C. Q. Xu, B. Chen, Y. Nihei, A. Harada, X. F. Yang, and C. Lu, “Efficient 1.5-μm-band MgO-doped LiNbO3 quasi-phase-matched wavelength converters,” Jpn. J. Appl. Phys. Lett 40, L796–L798 (2001). [CrossRef]
  32. C. Q. Xu, H. Okayama, and T. Kamijoh, “Quasiphase matched wavelength converters for optical communication systems,” Recent Res. Devel. Appl. Phys. 2, 193–221 (1999).
  33. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 675–680 (2002). [CrossRef]
  34. Q. Xu, M. Yao, Y. Dong, and J. Zhang, “Interferometric method of suppressing the pattern effect in a semiconductor optical amplifier,” Opt. Lett. 25, 1597–1599 (2000). [CrossRef]
  35. C. Q. Xu, H. Okayama, and K. Shinozaki, “Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity,” U.S. patent 5946129 (Aug. 31, 1999).
  36. J. Bracken and C. Q. Xu, “All-optical wavelength conversions based on MgO doped LiNbO3 QPM waveguides using an EDFA as a pump source,” IEEE Photon. Technol. Lett. (to be published).
  37. B. Chen, C. Q. Xu, B. Zhou, Y. Nihei, A. Harada, and Y. Wang, “Temperature characteristics of 1.5-μm-band MgO doped LiNbO3 quasi-phase matched wavelength converters,” Jpn. J. Appl. Phys. Lett. 40, L612–L614 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited