OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2179–2188

Electro-optic response of chromophores in a viscoelastic polymer matrix to a combined dc and ac poling field

Kim G. Jespersen, Thomas G. Pedersen, and Per Michael Johansen  »View Author Affiliations


JOSA B, Vol. 20, Issue 10, pp. 2179-2188 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002179


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a generalized model for the electro-optic response of chromophores in a viscoelastic polymer matrix to a combined dc and ac applied poling field. The model includes a local molecular field of random orientation at each chromophore site to take into account the influence of the polymer matrix on the chromophore reorientation. Hence the model relies on a physically intuitive picture of chromophore dynamics in a viscoelastic polymer matrix. The dynamics is described by the rotational diffusion equation, where the local molecular field is inferred and a solution is presented with a variational approach. We obtain an analytical expression for the electro-optic response both at the modulating frequency and at two times the modulating frequency, having explicit frequency and molecular-field dependence. The model is successfully compared with frequency-resolved ellipsometric measurements in an azo-dye containing polymer guest–host system that is poled in a combined dc and ac electric field. The experimental setup is a modified Teng–Man ellipsometer in a balanced detection scheme, and, as a model system for investigating the electro-optic response, we use the chromophore Disperse Red 1 in a polymer matrix of poly(methyl methacrylate). Finally, the model is compared with independent experiments on a 2,5-dimethyl-4-(p-nitrophenylazo)-anisole containing photorefractive polymer composite, and good qualitative agreement is found.

© 2003 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(250.2080) Optoelectronics : Polymer active devices
(260.1440) Physical optics : Birefringence

Citation
Kim G. Jespersen, Thomas G. Pedersen, and Per Michael Johansen, "Electro-optic response of chromophores in a viscoelastic polymer matrix to a combined dc and ac poling field," J. Opt. Soc. Am. B 20, 2179-2188 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-10-2179


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994). [CrossRef]
  2. P. Günter, Nonlinear Optical Effects and Materials (Springer-Verlag, Berlin, 2000).
  3. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994). [CrossRef]
  4. B. Kippelen, F. Meyers, N. Peyghambarian, and S. R. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997). [CrossRef]
  5. S. C. Brower and L. M. Hayden, “Activation volume associated with the relaxation and the second order nonlinear optical susceptibility in a guest-host polymer,” Appl. Phys. Lett. 63, 2059–2061 (1993). [CrossRef]
  6. S. J. Strutz and L. M. Hayden, “Effect of pressure and temperature on chromophore reorientation in a side-chain nonlinear optical polymer,” J. Polym. Sci. Part B Polym. Phys. 36, 2793–2803 (1998). [CrossRef]
  7. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–858 (1990). [CrossRef]
  8. M. G. Kuzyk, “Relationship between the molecular and bulk response,” in Measurement Techniques and Tabulations of Organic Nonlinear Optical Materials, M. G. Kuzyk and C. W. Dirk, eds. (Marcel Dekker, New York, 1998), p. 111.
  9. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991). [CrossRef]
  10. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University, Oxford, UK, 1986).
  11. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990). [CrossRef]
  12. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990). [CrossRef] [PubMed]
  13. A. Dhinojwala, G. K. Wong, and J. M. Torkelson, “Rotational reorientation dynamics of disperse red 1 in polystyrene: α-relaxation dynamics probed by second harmonic generation and dielectric relaxation,” J. Chem. Phys. 100, 6046–6054 (1994). [CrossRef]
  14. W. N. Herman and J. A. Cline, “Chielectric relaxation: chromophore dynamics in an azo-dye-doped polymer,” J. Opt. Soc. Am. B 15, 351–358 (1998). [CrossRef]
  15. B. Kippelen, Sandalphon, K. Meerholz, and N. Peyghambarian, “Birefringence, Pockels, and Kerr effects in photorefractive polymers,” Appl. Phys. Lett. 68, 1748–1750 (1996). [CrossRef]
  16. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996). [CrossRef]
  17. L. A. Dissardo and R. M. Hill, “The fractal nature of the cluster model dielectric response functions,” J. Appl. Phys. 66, 2511–2524 (1989). [CrossRef]
  18. T. Verbiest, D. M. Burland, and C. A. Walsh, “Use of the lognormal distribution function to describe orientational relaxation in optically nonlinear polymers,” Macromolecules 29, 6310–6316 (1996). [CrossRef]
  19. T. G. Pedersen, K. Jespersen, P. M. Johansen, and J. Wyller, “dc and ac electro-optic response of chromophores in a viscoelastic polymer matrix: analytical model,” J. Opt. Soc. Am. B 19, 2622–2631 (2002). [CrossRef]
  20. L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991). [CrossRef]
  21. R. D. Dureiko, D. E. Schuele, and K. D. Singer, “Modeling relaxation processes in poled electro-optic polymer films,” J. Opt. Soc. Am. B 15, 338–350 (1998). [CrossRef]
  22. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng–Man technique,” Chem. Phys. 245, 311–326 (1999). [CrossRef]
  23. F. Ghebremichael and M. G. Kuzyk, “Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with disperse red 1 azo dye,” J. Appl. Phys. 77, 2896–2901 (1995). [CrossRef]
  24. K. D. Singer and L. A. King, “Relaxation phenomena in polymer nonlinear optical materials,” J. Appl. Phys. 70, 3251–3255 (1991). [CrossRef]
  25. A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore-chromophore electrostatic interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998). [CrossRef]
  26. B. H. Robinson, L. R. Dalton, A. W. Harper, A. Ren, F. Wang, C. Chang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The molecular and supramolecular engineering of polymeric electro-optic materials,” Chem. Phys. 245, 35–50 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited