OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2189–2192

Single CdSe quantum dots for high-bandwidth single-photon generation

Thomas Aichele, Valéry Zwiller, Oliver Benson, Ilya Akimov, and Fritz Henneberger  »View Author Affiliations

JOSA B, Vol. 20, Issue 10, pp. 2189-2192 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have measured the correlation of the photon emission from single CdSe quantum dots under pulsed excitation. The results demonstrate that the emission from a single CdSe quantum dot can be used to generate single green photons on demand with subnanosecond accuracy.

© 2003 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(180.2520) Microscopy : Fluorescence microscopy
(270.0270) Quantum optics : Quantum optics

Thomas Aichele, Valéry Zwiller, Oliver Benson, Ilya Akimov, and Fritz Henneberger, "Single CdSe quantum dots for high-bandwidth single-photon generation," J. Opt. Soc. Am. B 20, 2189-2192 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef] [PubMed]
  3. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001). [CrossRef] [PubMed]
  4. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, and G. Björk, “Single quantum dots emit single photons at a time: antibunching experiments,” Appl. Phys. Lett. 78, 2476–2478 (2001). [CrossRef]
  5. V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Appl. Phys. Lett. 82, 1509–1511 (2003). [CrossRef]
  6. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, “Single-photon emission of CdSe quantum dots at temperatures up to 200 K,” Appl. Phys. Lett. 81, 2920–2922 (2002). [CrossRef]
  7. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000). [CrossRef] [PubMed]
  8. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000). [CrossRef]
  9. T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992). [CrossRef] [PubMed]
  10. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature (London) 406, 968–970 (2000). [CrossRef]
  11. Ch. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature (London) 419, 450 (2002). [CrossRef]
  12. T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and F. Henneberger, “Photon beats from a single semiconductor quantum dot,” Phys. Rev. Lett. 86, 3172–3175 (2001). [CrossRef] [PubMed]
  13. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, “Biexciton versus exciton lifetime in a single semiconductor quantum dot,” Phys. Rev. Lett. 83, 4417–4420 (1999). [CrossRef]
  14. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U. W. Pohl, D. Bimberg, and R. Steingrüber, “Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots,” Phys. Rev. B 61, 9944–9947 (2000). [CrossRef]
  15. M. Lowisch, M. Rabe, F. Kreller, and F. Henneberger, “Electronic excitations and longitudinal optical phonon modes of self-assembled CdSe quantum dots revealed by microprobe studies,” Appl. Phys. Lett. 74, 2489–2491 (1999). [CrossRef]
  16. J. A. Wunderlich and L. G. DeShazer, “Visible optical isolator using ZnSe,” Appl. Opt. 16, 1584–1587 (1977). [CrossRef] [PubMed]
  17. M. Rabe, M. Lowisch, and F. Henneberger, “Self-assembled CdSe quantum dots—formation by thermally activated surface reorganization,” J. Cryst. Growth 184/185, 248–253 (1998). [CrossRef]
  18. D. Litvinov, A. Rosenauer, D. Gerthsen, P. Kratzert, M. Rabe, and F. Henneberger, “Influence of the growth procedure on the Cd distribution in CdSe/ZnSe heterostructures: Stranski–Krastanov versus two-dimensional islands,” Appl. Phys. Lett. 81, 640–642 (2002). [CrossRef]
  19. T. Yao, “Characterization of ZnSe grown by molecular-beam epitaxy,” J. Cryst. Growth 72, 31–40 (1985). [CrossRef]
  20. I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Appl. Phys. Lett. 81, 4730–4732 (2002). [CrossRef]
  21. J. Puls, I. A. Akimov, and F. Henneberger, “Optical non-linearities related to trions in quantum wells and quantum dots,” Phys. Status Solidi B 234, 304–312 (2002). [CrossRef]
  22. S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.-M. Grard, and T. Amand, “Optically driven spin memory in n-doped InAs–GaAs quantum dots,” Phys. Rev. Lett. 89, 207401–1–207401–4 (2002). [CrossRef]
  23. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998). [CrossRef]
  24. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86, 3903–3906 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited