OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2249–2254

Measurement of the Cotton–Mouton constants of noble atoms

Kazuyuki Muroo, Naoki Ninomiya, Masahiro Yoshino, and Yoshitaka Takubo  »View Author Affiliations

JOSA B, Vol. 20, Issue 11, pp. 2249-2254 (2003)

View Full Text Article

Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetically induced birefringence (the Cotton–Mouton effect) of argon, neon, and helium atoms was measured with a high-sensitivity ellipsometer with a 790-nm GaAlAs diode laser. The detection limit of the change in ellipticity was attained to a shot-noise-limited value of 10<sup>−10</sup> rad. We determined the absolute values of the ellipticity changes caused by noble atoms using the light extinction ratio of the ellipsometer as an absolute standard, with this ratio measured by a method based on Malus’s law. The measured values of the Cotton–Mouton constant were (7.1±2.5)×10<sup>−10</sup> T<sup>−2</sup> m<sup>−1</sup> for He atoms, (1.3±0.5)×10<sup>−9</sup> T<sup>−2</sup> m<sup>−1</sup> for Ne atoms, and (1.1±0.2)×10<sup>−8</sup> T<sup>−2</sup> m<sup>−1</sup> for Ar atoms at a gas pressure of 1.52×10<sup>5</sup> Pa and a gas temperature of 285–293 K.

© 2003 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.3820) Materials : Magneto-optical materials
(260.1440) Physical optics : Birefringence

Kazuyuki Muroo, Naoki Ninomiya, Masahiro Yoshino, and Yoshitaka Takubo, "Measurement of the Cotton–Mouton constants of noble atoms," J. Opt. Soc. Am. B 20, 2249-2254 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. B. Lukins and G. L. D. Ritchie, “Magneto-optical Cotton-Mouton effect of molecular oxygen. A comparison,” Chem. Phys. Lett. 180, 551–555 (1991).
  2. F. Brandi, R. Della Valle, P. Micossi, A. M. De Riva, G. Zavattini, F. Perrone, C. Rizzo, and G. Ruoso, “Cotton-Mouton effect of molecular oxygen: a novel measurement,” J. Opt. Soc. Am. B 15, 1278–1281 (1998).
  3. A. D. Buckingham, W. H. Prichard, and D. H. Whiffen, “Magnetic birefringence of some diamagnetic gases,” Trans. Faraday Soc. 63, 1057–1064 (1967).
  4. S. Carusotto, E. Polacco, E. Iacopini, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence in oxygen and nitrogen gases,” Opt. Commun. 42, 104–108 (1982).
  5. S. Carusotto, E. Iacopini, E. Polacco, F. Scuri, G. Stefanini, and E. Zavattini, “Measurement of the magnetic birefringence of noble gas,” J. Opt. Soc. Am. B 1, 635–640 (1984).
  6. R. Cameron, G. Cantatore, A. C. Melissinos, J. Rogers, Y. Semertzidis, H. Halama, A. Prodell, F. A. Nezrick, C. Rizzo, and E. Zavattini, “Measurement of the magnetic birefringence of neon gas,” J. Opt. Soc. Am. B 8, 520–524 (1991).
  7. R. Cameron, G. Cantatore, A. C. Melissinos, Y. Semertzidis, H. Halama, D. Lazarus, A. Prodell, F. Nezrich, P. Micossi, C. Rizzo, G. Ruoso, and E. Zavattini, “First measurement of the magnetic birefringence of helium gas,” Phys. Lett. A 157, 125–128 (1991).
  8. S. Carusotto, E. Iacopini, F. Scuri, and G. Stefanini, “Atom size of rare gases from their magnetic birefringence,” Lett. Nouvo Cimento 42, 204–208 (1985).
  9. D. M. Bishop and S. M. Cybulski, “Calculation of dynamic magnetic hyperpolarizability anisotropies for He, Ne and Ar,” Chem. Phys. Lett. 200, 153–157 (1992).
  10. K. Muroo, M. Namikawa, and Y. Takubo, “High-sensitivity detection of magnetically-induced birefringence,” Meas. Sci. Technol. 11, 32–37 (2000).
  11. Y. Takubo, N. Takeda, J. Hau Huang, K. Muroo, and M. Yamamoto, “Precise measurement of the extinction ratio of a polarization analyser,” Meas. Sci. Technol. 9, 20–23 (1998).
  12. K. Muroo, S. Nakamura, H. Ishizaka, Y. Takubo, and M. Yamamoto, “Limit of sensitivity in the detection of sodium atoms in a flame with the resonant Voigt effect,” J. Opt. Soc. Am. B 12, 5–8 (1995).
  13. S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. (N.Y.) 67, 599–647 (1971).
  14. Regarding experimental proposals to detect vacuum birefringence, see articles in the Proceedings of the AIP Conference on Quantum Electrodynamics and Physics of the Vacuum, G. Cantatore, ed. (American Institute of Physics, Melville, N.Y., 2001). For example, E. Zavattini, F. Brandi, M. Bregant, G. Cantatore, S. Carusotto, F. Della Valle, G. Di Domenico, U. Gastaldi, E. Milotti, R. Pengo, G. Petrucci, E. Polacco, G. Ruoso, and G. Zavattini, “The PVLAS collaboration: experimental search for anisotropy of the phase velocity of light in vacuum due to a static magnetic field” (pp. 77–86) and S. Askenazy, J. Billette, P. Dupré, P. Ganau, J. Mackowski, J. Marquez, L. Pinard, O. Portugall, D. Ricard, G. L. J. A. Rikken, C. Rizzo, G. Trenec, and J. Vigué, “A 25 T dipole pulsed magnet to study the magnetic birefringence of vacuum: the BMV project” (pp. 115–122).
  15. J. L. Hall, J. Ye, and L.-S. Ma, “Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED,” Phys. Rev. A 62, 013815 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited