OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2329–2337

Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing

Nikola I. Nikolov, Thorkild Sørensen, Ole Bang, and Anders Bjarklev  »View Author Affiliations


JOSA B, Vol. 20, Issue 11, pp. 2329-2337 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002329


View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically study supercontinuum generation in photonic crystal fibers pumped with low-power 30-ps pulses close to the zero dispersion wavelength. We show how the efficiency is significantly improved by designing the dispersion to allow widely separated spectral lines generated by degenerate four-wave mixing directly from the pump to broaden and merge, resulting in a 800-nm-wide supercontinuum. Full-vectorial plane-wave calculations show that a cobweb photonic-crystal-fiber structure can realize the dispersion profiles under consideration. The predicted efficient supercontinuum generation is more robust and survives fiber imperfections modeled as random fluctuations of the dispersion coefficients along the fiber.

© 2003 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect

Citation
Nikola I. Nikolov, Thorkild Sørensen, Ole Bang, and Anders Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-11-2329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970). [CrossRef]
  3. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  4. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976). [CrossRef]
  5. P. L. Baldeck and R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” J. Lightwave Technol. 5, 1712–1715 (1987). [CrossRef]
  6. S. Coen, A. Chau, R. Leonardt, J. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation via stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  7. S. Coen, A. H. L. Chau, R. Leonardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light supercontinuum generation with 60-ps pulse in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001). [CrossRef]
  8. K. Mori, H. Takara, S. Kawanishi, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997). [CrossRef]
  9. K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B 18, 1780–1790 (2001). [CrossRef]
  10. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” IEEE J. Quantum Electron. 36, 773–779 (2000). [CrossRef]
  11. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000). [CrossRef]
  12. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001). [CrossRef] [PubMed]
  13. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 m,” Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optical Technology Series (Optical Society of America, Washington, D.C., 2002), paper FA9.
  14. J. K. Ranka, R. S. Windler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  15. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  16. A. V. Gusakov, V. P. Kalosha, and J. Herrmann, “Ultrawide spectral broadening and pulse compression in tapered and photonic fibers,” Quantum Electronics and Laser Science, Vol. 57 of OSA Trends in Optical Technology Series (Optical Society of America, Washington, D.C., 2001), p. 29.
  17. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002). [CrossRef]
  18. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002). [CrossRef]
  19. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  20. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windler, B. J. Eggeleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002). [CrossRef]
  21. W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002). [CrossRef] [PubMed]
  22. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503–1509 (2003). [CrossRef] [PubMed]
  23. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  24. C. D. Pole, J. H. Winters, and J. A. Nagel, “Dynamical equations for polarization dispersion,” Opt. Lett. 16, 372–374 (1991). [CrossRef]
  25. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Effects of randomly varying birefringence on soliton interactions in optical fibers,” Opt. Lett. 16, 1735–1737 (1991). [CrossRef] [PubMed]
  26. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996). [CrossRef]
  27. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15, 2269–2275 (1998). [CrossRef]
  28. N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8, 1476–1481 (1990). [CrossRef]
  29. J. Garnier and F. Kh. Abdullaev, “Modulational instability by random varying coefficients for the nonlinear Schrödinger equation,” Physica D 145, 65–83 (2000). [CrossRef]
  30. R. Knapp, “Transmission of solitons through random media,” Physica D 85, 496–508 (1995). [CrossRef]
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” Proc. IEEE 25, 2665–2673 (1989).
  32. P. T. Dinda, G. Millot, and S. Wabnitz, “Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,” J. Opt. Soc. Am. B 15, 1433–1441 (1998). [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 2000).
  34. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane-wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited