OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2363–2367

Removing population trapping in a five-level system with fast decay

Xi-Jing Ning  »View Author Affiliations


JOSA B, Vol. 20, Issue 11, pp. 2363-2367 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002363


View Full Text Article

Enhanced HTML    Acrobat PDF (134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A five-level quantum system including two low-lying states and three excited states of the ladder type coupled with four laser fields is investigated as it relates to dressed-atom models, and a dressed state is found to be independent of the ionization decaying from the highest level. Under general conditions, half of the initial population of the two low-lying states is trapped in the dressed state, leading to a low probability of ionization. Based on the analytical results, two schemes are proposed for removing population trapping. For a five-level system with hyperfine structures, such as the system for ionizing 235U atoms, population trapping takes place when the laser fields are weak and can be gotten rid of by an increase in laser intensity.

© 2003 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(270.4180) Quantum optics : Multiphoton processes
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Citation
Xi-Jing Ning, "Removing population trapping in a five-level system with fast decay," J. Opt. Soc. Am. B 20, 2363-2367 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-11-2363

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited