OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2448–2453

Total external reflection from metamaterials with ultralow refractive index

Brian T. Schwartz and Rafael Piestun  »View Author Affiliations


JOSA B, Vol. 20, Issue 12, pp. 2448-2453 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002448


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials composed of metal-dielectric nanostructures are engineered to have an effective refractive index less than unity at optical wavelengths. The effect of total external reflection is demonstrated when light from vacuum is incident onto these materials at an angle exceeding the critical angle defined by Snell’s law. Novel approaches are discussed to derive the effective index of refraction from the reflection and refraction properties of finite slabs. The effect of losses and dispersion are analyzed in the visible range of frequencies by consideration of the measured properties of silver. The differences among ultralow refractive-index metamaterials, photonic bandgap materials, and metals are discussed. Remarkably, a bandgap is not required to obtain total external reflection.

© 2003 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(160.4670) Materials : Optical materials
(350.3950) Other areas of optics : Micro-optics

Citation
Brian T. Schwartz and Rafael Piestun, "Total external reflection from metamaterials with ultralow refractive index," J. Opt. Soc. Am. B 20, 2448-2453 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-12-2448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002). [CrossRef] [PubMed]
  5. N. Garcia and M. Nieto-Vesperinas, “Is there an experimental verification of a negative index of refraction yet?” Opt. Lett. 27, 885–887 (2002). [CrossRef]
  6. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002). [CrossRef] [PubMed]
  7. B. T. Schwartz and R. Piestun, “Total external reflection at optical wavelengths,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics (Optical Society of America, Washington D.C., 2002), pp. 175–177.
  8. J. Brown, “Artificial dielectrics,” Prog. Dielectr. 2, 193–225 (1960).
  9. D. E. Aspnes, “Local-field effects and effective medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982). [CrossRef]
  10. D. Felbacq and G. Bouchitté, “Homogenization of a set of parallel fibres,” Waves Random Media 7, 245–256 (1997). [CrossRef]
  11. J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEE 100C, 51–62 (1953).
  12. K. C. Gupta, “Narrow-beam antennas using an artificial dielectric medium with permittivity less than unity,” Electron. Lett. 7, 16–17 (1971). [CrossRef]
  13. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  14. N. Garcia, E. V. Ponizovskaya, and J. Q. Xiao, “Zero permittivity materials: band gaps at the visible,” Appl. Phys. Lett. 80, 1120–1122 (2002). [CrossRef]
  15. D. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. thesis (University of California at Los Angeles, Los Angeles, Calif., 1999).
  16. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge U. Press, Cambridge, U.K., 1999).
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785–4809 (1998).
  18. J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, Reading, Mass., 1993).
  19. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 275–368.
  20. A. L. Pokrovsky and A. L. Efros, “Electrodynamics of metallic photonic crystals and the problem of left-handed materials,” Phys. Rev. Lett. 89, 093901 (2002). [CrossRef] [PubMed]
  21. R. M. Walser, A. P. Valanju, and P. M. Valanju, “Comment on ‘Extremely low frequency plasmons in metallic mesostructures’,” Phys. Rev. Lett. 87, 119701 (2001). [CrossRef]
  22. W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,” IRE Trans. Antennas Propag. AP10, 82–95 (1962). [CrossRef]
  23. Ansoft HFSS Version 8.0.25 (Ansoft Corporation, Pittsburgh, Pa., 2001).
  24. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction-like behavior in the vicinity of the photonic bandgap,” Phys. Rev. B 62, 10696 (2000). [CrossRef]
  25. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  26. O. Acher, A. L. Adenot, and F. Duverger, “Fresnel coefficients at an interface with a lamellar composite material,” Phys. Rev. B 62, 13748–13756 (2000). [CrossRef]
  27. Femlab Version 2.30.145 (Comsol Corporation, Burlington, Mass., 2002).
  28. G. Guida, D. Maystre, G. Tayeb, and P. Vincent, “Mean-field theory of two-dimensional metallic photonic crystals,” J. Opt. Soc. Am. B 15, 2308–2315 (1998). [CrossRef]
  29. P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995). [CrossRef]
  30. A. L. Reynolds, Translight Software (Optoelectronics Research Group, Dept. of Electronics and Electrical Engineering, Univ. of Glasgow, Glasgow, Scotland, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited