OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2454–2469

Anisotropy of refractive-index nonlinear change in Cr4+:YAG at cw resonant excitation: modeling

Alexander V. Kir’yanov and Juan Carlos Bermudez G.  »View Author Affiliations


JOSA B, Vol. 20, Issue 12, pp. 2454-2469 (2003)
http://dx.doi.org/10.1364/JOSAB.20.002454


View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model is developed for numerically calculating the nonlinear change of the refractive index in a Cr4+:YAG crystal under the powerful resonant (wavelength 1.06 μm) continuous-wave excitation. The anisotropy features of the Cr4+ centers’ population perturbation (bleaching) and the sample inhomogeneous heating (leading to the thermolensing effect) as the basic contributions in the refractive-index nonlinear change are addressed for the first time to our knowledge.

© 2003 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.5940) Nonlinear optics : Self-action effects

Citation
Alexander V. Kir’yanov and Juan Carlos Bermudez G., "Anisotropy of refractive-index nonlinear change in Cr4+: YAG at cw resonant excitation: modeling," J. Opt. Soc. Am. B 20, 2454-2469 (2003)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-12-2454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Eichler, A. Haase, M. R. Kokta, and R. Menzel, “Cr4+:YAG as passive Q-switch for a Nd:YALO oscillator with an average repetition rate of 2.7 kHz, TEMoo mode and 13 W output,” Appl. Phys. B 58, 409–411 (1994). [CrossRef]
  2. Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, and M. Strauss, “Repetitive Q-switching of a cw Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996). [CrossRef]
  3. N. N. Il’ichev, A. V. Kir’yanov, and P. P. Pashinin, “Model of passive Q switching taking into account the anisotropy of nonlinear absorption in a crystal switch with phototropic centers,” Quantum Electron. 28, 147–151 (1998). [CrossRef]
  4. K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG–Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993). [CrossRef] [PubMed]
  5. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994). [PubMed]
  6. I. T. Sorokina, S. Naumov, E. Sorokin, E. Wintner, and A. V. Shestakov, “Directly diode-pumped tunable continuous-wave Cr4+:YAG laser,” Opt. Lett. 24, 1578–1580 (1999). [CrossRef]
  7. H. Eilers, K. R. Hoffman, M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr, Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992). [CrossRef]
  8. N. N. Il’ichev, A. V. Kir’yanov, A. A. Malyutin, P. P. Pashinin, and S. M. Shpuga, “Anisotropy of nonlinear absorption in LiF: F2 and YAG:Cr 4+ crystals,” in Book of Abstracts (Kuban State University, Krasnodar, Russia, 1993), pp. 38–39.
  9. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, and S. M. Shpuga, “Investigation of nonlinear-absorption anisotropy in YAG:Cr4+,” JETP 78, 768–777 (1994).
  10. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, and S. M. Shpuga, “Changes in the profile and state of polarization of a short light pulse (λ=1.06 μm) during propagation in a YAG:Cr4+ crystal,” Quantum Electron. 24, 771–776 (1994). [CrossRef]
  11. S. Camacho-Lopez, R. P. M. Green, G. J. Crofts, and M. J. Damzen, “Intensity-induced birefringence in Cr4+:YAG,” J. Mod. Opt. 44, 209–219 (1997). [CrossRef]
  12. M. J. Damzen, S. Camacho-Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996). [CrossRef] [PubMed]
  13. N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Polarisation of a neodymium laser with a passive switch based on a Cr4+:YAG crystal,” Quantum Electron. 28, 17–20 (1998). [CrossRef]
  14. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, and A. LeFloch, “Experimental and theoretical study of monomode vectorial lasers passively Q-switched by Cr4+:yttrium aluminium garnet absorber,” Phys. Rev. A 60, 4052–4058 (1998). [CrossRef]
  15. V. B. Tsvetkov, I. V. Klimov, and I. A. Shcherbakov, “Influence of saturation anisotropy on output polarization of Nd:YAG laser with Cr 4+-doped Q-switch,” in Advanced Solid-State Lasers, M. E. Fermann and L. R. Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 445–449.
  16. N. N. Il’ichev, A. V. Kir’yanov, E. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarization characteristics of a neodymium laser,” Quantum Electron. 27, 298–301 (1998). [CrossRef]
  17. H. Liu, J. Dawes, P. Dekker, and J. Piper, “Measurement of polarization-dependent loss mechanisms in Cr 4+ :YAG,” in Advanced-Solid-State Photonics, OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 195–197.
  18. A. Sennaroglu, “Continuous-wave thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997). [CrossRef]
  19. A. Sennaroglu, A. Askar, and F. M. Atay, “Quantitative study of laser beam propagation in a thermally loaded absorber,” J. Opt. Soc. Am. B 14, 356–363 (1997). [CrossRef]
  20. J. Song, C. Li, and K. Ueda, “Thermal influence of saturable absorber in passively Q-switched diode-pumped cw Nd:YAG/Cr4+:YAG laser,” Opt. Commun. 177, 307–316 (2000). [CrossRef]
  21. A. V. Kir’yanov, Yu. O. Barmenkov, M. del Rayo, and V. N. Filippov, “Ground-state absorption saturation and thermo-lensing effect as main sources of refractive index non-linear change in Cr4+:YAG at cw 1.06 mkm excitation,” Opt. Commun. 213, 151–162 (2002). [CrossRef]
  22. N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, V. A. Sandulenko, A. V. Sandulenko, and S. M. Shpuga, “Anisotropy of nonlinear absorption in a YAG:V3+ crystal,” Quantum Electron. 25, 1154–1157 (1995). [CrossRef]
  23. N. N. Il’ichev, A. V. Kir’yanov, and A. A. Malyutin, “Self-induced change in the polarization of high-power resonant radiation in an LiF:F2 crystal,” Sov. J. Quantum Electron. 21, 844–848 (1991). [CrossRef]
  24. N. N. Il’ichev, A. V. Kir’yanov, and A. A. Malyutin, “Peculiarities of anisotropy and dichroizm induced by laser radiation in LiF:F2 crystal,” Laser Phys. 1, 311–323 (1991).
  25. N. N. Il’ichev, A. V. Kir’yanov, A. A. Malyutin, P. P. Pashinin, and S. M. Shpuga, “The anisotropy of nonlinear absorption induced by laser radiation in LiF:F2 crystal: the short pulse case,” Laser Phys. 3, 182–190 (1993).
  26. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001). [CrossRef]
  27. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970). [CrossRef] [PubMed]
  28. P. K. Mukhopadhyay, J. George, K. Ranganathan, S. K. Sharma, and T. P. S. Nathan, “An alternative approach to determine the fractional heat load in solid state laser materials: application to diode-pumped Nd:YVO4 laser,” Opt. Laser Technol. 34, 253–258 (2002). [CrossRef]
  29. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971). [CrossRef]
  30. A. A. Andrade, E. Tenorio, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr+3,” J. Opt. Soc. Am. B 16, 395–400 (1999). [CrossRef]
  31. L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-scan measurement of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994). [CrossRef]
  32. L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,” Jpn. J. Appl. Phys., 35, 2649–2652 (1996). [CrossRef]
  33. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239–241 (2003). [CrossRef] [PubMed]
  34. A. G. Okhrimchuk and A. V. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000). [CrossRef]
  35. I. T. Sorokina, S. Naumov, E. Sorokin, and A. G. Okhrimchuk, “The mechanisms of slow bleaching in YAG:Cr 4+ under cw pumping,” in Laser Optics 2000: Solid State Lasers, V. I. Ustugov, ed., Proc. SPIE 4350, 99–105 (2001).
  36. S. Kuck, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001). [CrossRef]
  37. A. J. Alcock, P. Scorah, and K. Hnatovsky, “Broadly tunable continuous-wave diode-pumped Cr4+:YAG laser,” Opt. Commun. 215, 153–157 (2003). [CrossRef]
  38. A. G. Okhrimchuk and A. V. Shestakov, “Performance of YAG:Cr4+ laser crystal,” Opt. Mater. 3, 1–13 (1994). [CrossRef]
  39. A. Brignon, P. Sillard, and J.-P. Huignard, “Vector phase conjugation in Cr4+:YAG by four-wave mixing with linearly-polarized pump beams,” Appl. Phys. B 63, 537–540 (1996).
  40. A. Brignon, “Anisotropic properties of pulsed four-wave mixing in Cr4+:YAG crystal,” J. Opt. Soc. Am. B 13, 2154–2163 (1996). [CrossRef]
  41. A. G. Okhrimchuk, Prokhorov General Physics Institute, Moscow, Russia (personal communication, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited