OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2502–2514

Unified analysis of modulational instability induced by cross-phase modulation in optical fibers

Takuo Tanemura and Kazuro Kikuchi  »View Author Affiliations

JOSA B, Vol. 20, Issue 12, pp. 2502-2514 (2003)

View Full Text Article

Acrobat PDF (1236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cross-phase modulation in an optical fiber can lead to various types of modulational instability, such as polarization instability in a highly birefringent fiber and two-pump optical parametric amplification. We present unified analyses of such instabilities and clarify the general mechanisms behind them. By solving the generalized eigenvalue equation, we indicate the explicit conditions of inducing modulational instability. The eigenvector is also calculated, which allows us to explain underlying physics of instabilities using a phasor diagram. As a result, all types of cross-phase modulation-induced modulational instability are classified into three types in terms of their mechanisms.

© 2003 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

Takuo Tanemura and Kazuro Kikuchi, "Unified analysis of modulational instability induced by cross-phase modulation in optical fibers," J. Opt. Soc. Am. B 20, 2502-2514 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. A. Ostrovskii, “Propagation of wave packets and space–time self-focusing in a nonlinear medium,” Zh. Eksp. Teor. Fiz. 51, 1189–1194 (1966) [ Sov. Phys. JETP 24, 797–800 (1967)].
  2. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. QE-16, 694–697 (1980).
  3. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. QE-23, 174–176 (1987).
  4. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990).
  5. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
  6. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061–1082 (1992).
  7. E. Lantz, D. Gindre, H. Maillotte, and J. Monneret, “Phase matching for parametric amplification in a single-mode birefringent fiber: influence of the non-phase-matched waves,” J. Opt. Soc. Am. B 14, 116–125 (1997).
  8. J. Hong and W. P. Huang, “Modulation instability in highly birefringent optical fibers: a coupled-mode analysis,” IEEE J. Quantum Electron. 28, 1838–1843 (1992).
  9. E. Seve, P. T. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996).
  10. P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996).
  11. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Zh. Eksp. Teor. Fiz. 58, 903–911 (1970) [ Sov. Phys. JETP 31, 486–490 (1970)].
  12. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
  13. G. Millot, S. Pitois, P. T. Dinda, and M. Haelterman, “Observation of modulational instability induced by velocity-matched cross-phase modulation in a normally dispersive bimodal fiber,” Opt. Lett. 22, 1686–1688 (1997).
  14. G. Millot, S. Pitois, and P. T. Dinda, “Modulational instability processes in optical isotropic fibers under dual-frequency circular polarization pumping,” J. Opt. Soc. Am. B 19, 454–460 (2002).
  15. J. E. Rothenberg, “Modulational instability of copropagat-ing frequencies for normal dispersion,” Phys. Rev. Lett. 64, 813–814 (1990).
  16. W. Huang and J. Hong, “A coupled-mode analysis of modulation instability in optical fibers,” J. Lightwave Technol. 10, 156–162 (1992).
  17. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Instability due to cross-phase modulation in the normal-dispersion regime,” Phys. Rev. E 48, 2178–2186 (1993).
  18. F. S. Yang, M. C. Ho, M. E. Marhic, and L. G. Kazovsky, “Demonstration of two-pump fibre optical parametric amplification,” Electron. Lett. 33, 1812–1813 (1997).
  19. J. M. C. Boggio, S. Tenenbaum, and H. L. Fragnito, “Amplification of broadband noise pumped by two lasers in optical fibers,” J. Opt. Soc. Am. B 18, 1428–1435 (2001).
  20. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002) [correction: 956 (2002)].
  21. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing,” IEEE Photon. Technol. Lett. 14, 1406–1408 (2002).
  22. C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr medium,” IEEE J. Quantum Electron. 25, 2674–2682 (1989).
  23. B. L. van der Waerden, Algebra, Vol. I (Springer-Verlag, New York, 1991).
  24. S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited