OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2515–2522

Temporal analysis of open-circuit dark photovoltaic spatial solitons

Mathieu Chauvet  »View Author Affiliations

JOSA B, Vol. 20, Issue 12, pp. 2515-2522 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model and experimental results to characterize the time-dependent formation of one-dimensional dark photovoltaic solitons under open-circuit conditions are presented. According to this theory, quasi-steady-state and steady-state solitons can both be obtained. In the quasi-steady-state regime solitons have intensity-independent widths, whereas their formation time is inversely proportional to the intensity, as confirmed by experimental results obtained with LiNbO3 samples. Theory predicts that the response times of steady-state solitons will be given by the dielectric response in the absence of an illuminating field, Td. In the samples used in this research, only a trend toward a steady-state regime was observed, because of the prohibitively high value of Td.

© 2003 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Mathieu Chauvet, "Temporal analysis of open-circuit dark photovoltaic spatial solitons," J. Opt. Soc. Am. B 20, 2515-2522 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef] [PubMed]
  2. G. Duree, J. L. Shultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993). [CrossRef] [PubMed]
  3. M. D. Iturbe-Castillo, P. A. Marquez-Aguilar, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994). [CrossRef]
  4. M. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995). [CrossRef]
  5. M. Shih, P. Leach, M. Segev, M. H. Garet, G. Salamo, and G. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett. 21, 324–326 (1996). [CrossRef] [PubMed]
  6. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994). [CrossRef] [PubMed]
  7. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garret, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996). [CrossRef] [PubMed]
  8. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995). [CrossRef]
  9. M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718 (1996). [CrossRef]
  10. M. I. Carvalho, S. R. Singh, and D. N. Christodoulides, “Self-deflection of steady-state bright solitons in biased photorefractive crystals,” Opt. Commun. 120, 311–315 (1995). [CrossRef]
  11. W. Krolikowski, B. Luther-Davies, C. Denz, J. Petter, C. Weilnau, A. Stepken, and M. Belic, “Interaction of two-dimensional spatial incoherent solitons in photorefractive medium,” Appl. Phys. B 68, 975–982 (1999). [CrossRef]
  12. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied field,” Phys. Rev. A 51, 1520–1531 (1995). [CrossRef] [PubMed]
  13. A. A. Zozulya and D. Z. Anderson, “Nonstationary self-focusing in photorefractive media,” Opt. Lett. 20, 837–839 (1995). [CrossRef] [PubMed]
  14. N. Fressengeas, J. Maufoy, and G. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866–6875 (1996). [CrossRef]
  15. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995). [CrossRef] [PubMed]
  16. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996). [CrossRef] [PubMed]
  17. V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, “Observation of dark spatial photovoltaic solitons in planar waveguides in lithium niobate,” J. Opt. A Pure Appl. Opt. 2, 500–503 (2000). [CrossRef]
  18. M. Chauvet, S. Chauvin, and H. Maillotte, “Transient dark photovoltaic spatial solitons and induced guiding in slab LiNbO3 waveguides,” Opt. Lett. 26, 1344–1346 (2001). [CrossRef]
  19. W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182–3185 (1999). [CrossRef]
  20. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4469 (1994). [CrossRef] [PubMed]
  21. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997). [CrossRef]
  22. P. Yeh, “Photorefractive effects,” in Introduction to Photorefractive Nonlinear Optics, J. Goodman, ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), pp. 82–116.
  23. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997). [CrossRef]
  24. H. Kogelnik, “Theory of optical waveguides,” in GuidedWave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Se-ries in Electronics and Photonics (Springer-Verlag, Berlin, 1988), pp. 7–87. [CrossRef]
  25. M. Wesner, C. Herden, P. Pankrath, D. Kip, and P. Moretti, “Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium waveguides,” Phys. Rev. E 64, 036613 (2001). [CrossRef]
  26. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995). [CrossRef] [PubMed]
  27. X. J. Chen, D. S. Zhu, B. Li, T. Ling, and Z. K. Wu, “Fast photorefractive response in strongly reduced near-stoichiometric LiNbO3 crystals,” Opt. Lett. 26, 998–1000 (2001). [CrossRef]
  28. C. Anastassiou, M. F. Shih, M. Mitchell, Z. Chen, and M. Segev, “Optically induced photovoltaic self-defocusing-to-self-focusing transition,” Opt. Lett. 23, 924–926 (1998). [CrossRef]
  29. A. D. Boardman, Y. Liu, and W. Ilecki, “Polarization control of open-circuit photovoltaic-photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 8, 479–487 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited