OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2534–2538

Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films

Ahmer Naweed, Frank Baumann, William A. Bailey, Jr., Aram S. Karakashian, and William D. Goodhue  »View Author Affiliations

JOSA B, Vol. 20, Issue 12, pp. 2534-2538 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon polaritons are believed to be responsible for higher-than-expected light transmission through metallic films with subwavelength aperture arrays. Here we report the effect of aperture size increase on far-infrared transmission characteristics of such perforated films. The observed increase in the transmission efficiency and the redshift of the resonance frequency are consistent with a published theoretical model, which identifies radiation damping of surface plasmon polaritons as the driving mechanism behind these spectral changes. Optical properties of films with different lattice and aperture configurations, however, are found to respond distinctly to aperture enlargement and indicate the critical role of these parameters on the scattering of surface plasmon polaritons into electromagnetic radiation. The effects of radiation damping are also recognized in the angular dependence of the transmission spectra.

© 2003 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(300.6270) Spectroscopy : Spectroscopy, far infrared

Ahmer Naweed, Frank Baumann, William A. Bailey, Jr., Aram S. Karakashian, and William D. Goodhue, "Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films," J. Opt. Soc. Am. B 20, 2534-2538 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991). [CrossRef] [PubMed]
  4. S. Chu, “The manipulation of neutral particles,” Rev. Mod. Phys. 70, 685–706 (1998). [CrossRef]
  5. C. N. Cohen-Tannoudji, “Manipulating atoms with photons,” Rev. Mod. Phys. 70, 707–719 (1998). [CrossRef]
  6. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998). [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  8. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  9. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999). [CrossRef]
  10. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  12. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001). [CrossRef] [PubMed]
  13. T. K. Wu, ed., Frequency Selective Surface and Grid Arrays (Wiley, New York, 1995).
  14. F. Baumann, W. A. Bailey, Jr., A. Naweed, W. D. Goodhue, and A. J. Gatesman, “Wet-etch optimization of free-standing terahertz frequency-selective structures,” Opt. Lett. 28, 938–940 (2003). [CrossRef] [PubMed]
  15. Because of the frail nature of the films, it was not possible to determine the decrease in film thickness as a function of etch time. However, the film thickness is expected to decrease at a rate similar to the rate of increase in aperture size.
  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  17. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  19. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001). [CrossRef]
  20. J. S. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W. Tsai, Classical Electrodynamics (Perseus, Reading, Mass., 1998).
  21. J. A. Sanchez-Gil and A. A. Maradudin, “Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects,” Phys. Rev. B 60, 8359–8367 (1999). [CrossRef]
  22. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327–4329 (2002). [CrossRef]
  23. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  24. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  25. J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86, 5180–5183 (2001). [CrossRef] [PubMed]
  26. R. Sambles, “More than transparent,” Nature 391, 641–642 (1998). [CrossRef]
  27. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002). [CrossRef] [PubMed]
  28. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited